

ISSN: 2521-5051 (Print)
ISSN: 2521-506X (Online)
CODEN: ASMCCQ

REVIEW ARTICLE

COMPARATIVE GENOMICS OF VECTOR AND NON-VECTOR INSECTS: UNCOVERING MOLECULAR DETERMINANTS OF VECTOR COMPETENCE

Arina Akter Nupur, Md. Mamunur Rahman*

Department of Entomology, Gazipur Agricultural University, Gazipur-1706, Bangladesh

*Corresponding Author Email: mamun@gau.edu.bd

This is an open access journal distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

ARTICLE DETAILS

Article History:

Received 23 May 2025
Revised 18 June 2025
Accepted 11 July 2025
Available online 02 August 2025

ABSTRACT

Vector competence is the inherent capacity of an insect to transmit diseases to plants and other organisms. It's a complex feature influenced by several factors such as their physiology, microbiology, environment and some genetic factors. The main molecular features that separate vector insects apart from their non-vector counterparts are depicted in this review by synthesizing current developments in comparative genomics. The modulation of pathogen susceptibility, their transmission is largely dependent on various immunological Pathways-Toll, IMD and JAK-STAT. Here insects' gene family expansions and their regulatory mechanisms related to immunity, olfaction, digestion, detoxification and salivary secretion by combining information from annotated genomes, transcriptome profile experiments have been studied. Beyond genome discovery, the review examines how domestication, natural selection, urban adaptations have contributed to shape vectorial traits across the insect populations. This review also investigates the genetic bases of the main barriers to transmission-salivary gland tropism, midgut infection and hemocoel dispersion. Vector control mechanisms are conceivable by developments in high-through- microbiome engineering, input sequencing, CRISPR/Cas9 genome editing and RNA interference. Moreover, this review studies the potential of integrative multiomics and predictive genomes addressing ethical and ecological issues crucial for field applications.

KEYWORDS

Vector competence, Genome editing, CRISPR/Cas9, Toll, IMD, JAK-STAT pathways

1. INTRODUCTION

Vector competence is a complicated trait which is mostly dependent on insect's innate ability to gain, retain or spreading pathogens. The transmission of vector-borne diseases is a continuous serious challenge in agriculture, public health and livestock. Now we know that this characteristic is influenced by a variety of genetic, microbiological, ecological variables within different insect species. Intrinsic genetic traits such as the integrity of the midgut barrier, antiviral immune pathways with the specificity of the salivary gland receptors play a major role in determining vector competence (Lewis et al., 2023). For example, Toll and IMD signaling, RNA interference (RNAi) pathways and JAK-STAT immune responses all are essential for viral replication control in the insect host. Similarly, comparative genomics is essential for finding transmission-relevant loci since these pathways might differ greatly between competent and incompetent vector species.

Recent research indicates how insect-specific viruses (ISVs) greatly affect vector competence. In this case, ISVs can either promote or inhibit arboviral replication through resource competition or immune priming which is an understudied aspect of endogenous viral control (Olmo et al., 2023). Besides, vector microbiome is considered to be the central to pathogen transmission dynamics as symbionts and gut microbes can interact with the metabolism of different vectors and immune responses either enhancing or inhibiting pathogen development (Song et al., 2022). These complex microbial-host interactions are shaped by- both genomic compatibility and ecological pressures. Integrated control strategies increasingly use genetic technologies with addition to biological and pharmacological aspects to address these multilayered factors (Abbasi, 2023). Real-time data collection and precise action are further supported

by advances like UAV based vector surveillance (Mechan et al., 2023). Recent developments in microbial relationships with immunological modulation, comparative genomics using emerging technologies are described in this review to shed light on the molecular and ecological underpinnings of vector competence.

The objectives of this review is to-

- Identify the genomic features which differentiate the vector and non-vector insects.
- To elucidate molecular and functional mechanisms beyond vector competence.
- To depict and evaluate emerging genomic technologies and their applications in vector control strategies.

2. OVERVIEW OF AVAILABLE GENOME ASSEMBLIES

For both vector and non-vector insects-there are now more chances to analyze and get the molecular drivers of vector competence as high-quality genome assemblies are increasingly being available. Some recent studies have identified significant genome-wide variations in mosquito vectors such as *Aedes aegypti* and *Aedes albopictus*, especially in areas linked to immunological regulation and antiviral defense (Acharya et al., 2024). In addition to these, comparative transcriptome analyses elucidate the continuous genomic potential in vector and non-vector species. For instance, *Schizaphis graminum* (vector) and *Rhopalosiphum padi* (non-vector) exhibit different patterns of gene expression at the time of their feeding, indicating that competence is influenced by innate genomic programming (Li et al., 2020).

Quick Response Code

Access this article online

Website:
www.actascientificamalaysia.com

DOI:

10.26480/asm.01.2024.19.24

The ability of vector genomes for adjustment of the presence of pathogens is further demonstrated by the unique transcriptome changes that whiteflies exposed to cotton leaf curl Multan virus display based on the host infection status (T. Chen et al., 2024). In addition to direct vectors, genetic research on insects that transfer viruses but do not disseminate them is also becoming more popular. Recent studies indicate partial molecular overlap in host attraction and response suggesting that, some viruses can control both vector and non-vector behaviors through common pathways (S. Li et al., 2025). The necessity of multi-species genetic comparisons is highlighted by these findings.

2.1 Genome Structure Including Size, Repeat Content and Gene Density

The structure, size and shape of insect genomes vary greatly representing functional adaptations, like vector competence. For example, *Aedes aegypti* which is mostly driven by transposable elements, has one of the largest genomes in the Diptera (size of about 1.38 Gb) is mostly driven by transposable elements (Arensburger et al., 2011). Vectors typically belong more repetitive and larger genomes than non-vectors because of they have increased genomic flexibility by pathogen and environmental stressors. Non-coding DNA and transposon load have also been connected to insect genome size and shape variation that may affect gene regulation and epigenetic responsiveness. Transposable element content and non-coding regions are the main drivers of family-level genome size variations within insect species (Cong et al., 2022).

Moreover, vectors and non-vectors may differ in how their immunological and sensory genes are regulated due to this structural variance. According to the study, developments in insect-cell expression platforms like baculovirus infected cells have made it easier to molecularly investigate big viral vectors and how they interact with insect hosts (Joshi, 2024). This has given researchers important tools for comprehending viral tropism and replication. Repeat content, gene density and regulatory complexity are three genomic characteristics that greatly influence the functional landscape determining vector competence at the molecular level- has given researchers important tools for comprehending viral tropism and replication.

2.2 Innate Immunity: Toll, Imd, And Jak-Stat Pathways in Vector Competence

Vector competence is mostly determined by the innate immune system with three main conserved signaling pathways- Toll, IMD and JAK-STAT pathways. This pathways control insect's capacity to identify and react to pathogen abundance. Comparative experiment between vector and non-vector species shows significant differences in the activation and regulation of these pathways contributing to varying susceptibility to pathogens. Toll, IMD and JAK/STAT pathway genes are significantly modulated in hemimetabolous vector *Rhodnius prolixus* when they are infected by the protozoan parasite *Trypanosoma rangeli*. This is especially justified for a crucial insect's fat body immune organ (Rolandelli et al., 2021). As showed infection with the entomopathogenic fungus *Beauveria bassiana* in the lepidopteran *Spodoptera frugiperda* insects resulted in significant transcriptional activation of genes in all three pathways (J. Li et al., 2023). These results highlight the ways in which immune gene networks diversity and inducibility affect an insect's ability to withstand or suppress infections- essential to comprehending the genetic underpinnings of vector competence.

2.3 Detoxification and Xenobiotic Metabolism in Vector Competence

Detoxification gene particularly those encoding Glutathione-S-transferases, carboxylesterases, and cytochrome P450 monooxygenases are crucial for vector competence as the vector insects have the ability to transmit diseases. Insecticide-treated populations of *Anopheles gambiae* and *Aedes aegypti* show altered arboviral susceptibility based on comparative research conducted by (Kay, 2023). Furthermore, molecular studies in *Frankliniella fusca* and *Amplicephalus curtulus* showed how detoxification pathways are controlled epigenetically and enzymatically in response to phytovirus infection and environmental stress (Catto et al., 2023).

When overexpression of detoxification genes such as cytochrome P450s and esterases takes place in vector species like *Aedes aegypti* and *Anopheles gambiae* alters susceptibility to arboviruses and confers pesticide resistance (Kay, 2023). These enzymes have indirect effects on viral replication or immunological signaling, which could lead to physiological settings that are more or less favorable for creation of infections. Similarly, the pest status and transmission efficiency of *Frankliniella fusca* are probably due to detoxifying gene divergence and epigenetic modifications (Catto et al., 2023). On the contrary, it's possible that non-vector species have different regulatory limitations or less potent

detoxification processes limiting their capacity to interact with viruses. For instance, when they are infected with phytoplasmas, *Amplicephalus curtulus* exhibits decreased fitness and detoxifying enzyme activity with a weakened metabolic resistance (Arismendi, 2014). Therefore, a crucial genetic and functional difference between vector and non-vector insects is represented by detoxification pathways.

2.4 Chemosensory Organs: Olfaction and Gustation

Host-seeking, feeding and mating behaviors depending on chemosensory receptors, especially those controlling olfaction and gustation are closely connected to vector competence. A diverse range gustatory receptors (GRs), odorant receptors (ORs), ionotropic receptors (IRs) mediate host recognition in hematophagous hemipterans using volatile signals such as lactic acid, carbon dioxide and chemicals released by plants (Liu et al., 2021). Vector species frequently belong highly expressed versions of these receptors that increases sensitivity to host-related stimuli.

Many of the chemosensory ionotropic receptors in mosquitoes like *Aedes aegypti* and *Anopheles gambiae* are tuned to human-specific odors including perspiration and chemicals originating from the skin microbiome, and these receptors have expanded according to lineage (Raji and Potter, 2022). This chemosensory equipment improves transmission efficiency and allows for accurate host targeting. On the other hand, non-vector insects generally belong less diverse chemoreceptor gene families and fewer belong sophisticated host-seeking systems. According to this distinction, chemosensory genomic adaptations are a crucial evolutionary factor that sets vectors apart from non-vectors.

2.5 Salivary Gland Proteins and Digestive Enzymes

Salivary gland protein and digestion enzyme are used for pathogen acquisition and disease host contact in the case of vector insects. Saliva from insects not only makes plants/plant parts easier to pierce or feed on blood but also makes entry of pathogens easier. Salivary glands of *Macrosteles striifrons* are essential locations for pathogen accumulation and subsequent release into plant hosts in phytoplasma insect interactions by highlighting crucial function in the spatiotemporal regulation of transmission (Koinuma et al., 2020). Furthermore, new research has shown that the salivary gland microbiota in vector insects such as *Haemaphysalis longicornis* dynamically changes during pathogen transmission by impacting immunological signaling pathways and enzyme release which potentially change vector competence (T. Chen et al., 2024). On the other hand, these particular types of salivary adaptations are generally absent in non-vector arthropods as the functional and genetic differences between vector and non-vector species are highlighted by the fact that their glandular secretions are typically more restricted to feeding abilities and lack the complexity observed in vectors (Hirabayashi et al., 2024).

3. MOLECULAR DETERMINANTS OF VECTOR COMPETENCE

3.1 Genomic Basis of Pathogen Interaction: Viruses, Bacteria and Parasites

Genomic compatibility is an important determinant of vector to maintain the life cycles of bacteria, viruses, parasites and other microorganisms. The capacity of vector to allow or prevent pathogen establishment is modulated by particular gene families as those involved in innate immunity, cellular transport and receptor-mediated interactions. For instance, restriction factors in mosquitoes such RNA interference (RNAi) genes can inhibit viral amplification, while host proteins that interact with viral envelope components increase viral entrance and replication (Lewis et al., 2023; Reitmayer et al., 2020). As a result of host-pathogen coevolution, vectors have been selected for containing genotypes either confer resistance or increase susceptibility. Parasite infections and bacterial symbionts also alter or take advantage of vector pathways by influencing immune evasion or tolerance (Wang et al., 2024). These interactions affect whether infection and transmission are successful or not or they are encoded in the vector genome. That is why comparative genomic analysis is able to identify molecular characteristics that differentiate competent vectors from non-vectors.

3.2 Transmission Barriers: Midgut Infection, Hemocoel Dissemination and Escape

Every pathogen generally goes through a number of physiological obstacles in the insect host. Viruses and parasites enter first in the midgut, where they infect epithelial cells, multiply their population number and then flee into the hemocoel. Abortive infection is the result of failure at this point. However, vector competence is notably impacted by genetic variables- that control antiviral responses and midgut receptor availability (Lewis et al., 2023; Wang et al., 2024). Viruses must pass through immune-rich environments to get their target tissues like the

salivary glands after entering the hemocoel. By neutralizing circulating pathogens, the vector's innate immune pathways (Toll and IMD) can obstruct this process (Schneider et al., 2021). However, to infect salivary tissues, some viruses either subvert host immunity or take advantage of cytoskeletal transport pathways (Reitmayer et al., 2020). These barriers are crucial genomic and physiological checkpoints in pathogen transmission, since recent studies have also highlighted the involvement of microbiota and environmental stressors in modifying them (Widlake, 2024).

3.3 Role of The Microbiome and Endosymbionts in Modulating Vector Competence

The competence of insect vectors is significantly and dynamically shaped by the microbiota that are comprised of fungus, bacteria and viruses where the gut and tissue microbiota of insects affect metabolism, immunity and even the ability to spread severe infections. As highlighted

that different microbial communities increase their vectorial capability by aiding pathogen replication whereas others prevent it through immune priming or competition (Jupatanakul et al., 2014). According to the study, endosymbiotic bacteria like Wolbach can decrease arboviral proliferation in mosquitoes either by directly competing for cellular resources or by improving baseline immune responses (Weiss and Aksoy, 2011). In contrast, microbial dysbiosis can weaken immunological barriers, making a person more vulnerable to infection. Certain host genes that control immunological activation, tissue-specific colonization and microbial tolerance facilitate these interactions at the molecular level (Douglas, 2014). Microbial profiles are attractive targets for vector control techniques because of the co-evolution of vectors and their microbiota, which implies that they play an equal role in determining viral competence as host genetics. Below, showing a summarize form of some crucial molecular factors with their major contribution for vector competence in table 1.

Table 1: Molecular Basis of Vector Competence in Insects

Molecular Feature	Description	Contribution in Vector Competence	Key References
Innate Immunity Genes (Toll, IMD, JAK-STAT)	Signaling cascades triggered by pathogen identification	Adjusts tolerance or resistance to bacterial, viral, and parasitic illnesses.	(J. Li et al., 2023; Rolandelli et al., 2021)
Chemosensory Receptors (Olfactory, Gustatory)	Detect host such as CO ₂ , sweat or volatiles	Enhance host-seeking and biting efficiency	(Liu et al., 2021; Raji and Potter, 2022)
Microbiome-Modulating Genes	Engage with commensal or symbiotic microorganisms.	Influence vector immunity and pathogen colonization	(Jupatanakul et al., 2014; Katak et al., 2023)
Detoxification Enzymes (Cytochrome P450s, GSTs, Carboxylesterases)	Break down xenobiotics and pesticides	Activate survival in insecticide-treated environments	(Black IV et al., 2021; Kay, 2023)
Salivary Gland Proteins	Encourage the discharge of pathogens into the host and blood feeding	Influence pathogen transmission and host immune evasion	(W. Chen et al., 2025; Koinuma et al., 2020)
Midgut and Barrier Genes	Encode proteins that control immunological response and epithelial integrity.	Determine success of midgut infection and escape	(Lewis et al., 2023; Wang et al., 2024)
Regulatory RNAs (miRNAs, piRNAs)	Regulation of post-transcriptional genes	Modulate immune gene expression and viral replication	(Ortolá and Daròs, 2024; Weiss and Aksoy, 2011)

(This section depicts some recent transcriptomic and genomic findings on molecular drivers of vector and non-vector competence including microbial interactions, gene regulation, immune modulation by drawing key studies and inform future vector control innovations.)

4. FUNCTIONAL AND REGULATORY GENOMICS IN VECTOR COMPETENCE

4.1 Transcriptomic Responses To Pathogen Exposure

The changes in gene expression, especially in the messenger RNA molecules of any cell or organism experiencing a specific stimulus is termed as transcriptomics. The differentiation factors differentiating vectors from non-vectors through pathogen exposure has been possible due to comparative transcriptomics. It is revealed that thrips' metabolic, immunological and cuticle-associated genes were found to be differentially regulated when the vector *Frankliniella fusca* and the non-vector *F. tritici* were compared side by side (Shrestha et al., 2019). However, while the non-vector species displayed only minor transcriptional changes- indicating innate insensitivity or a lack of pathogen detection systems, the vector species displayed upregulation of genes associated to antiviral defense and midgut integrity. The activation of particular gene clusters for pathogen detection, signaling and stress response frequently correlates with vector competence, according to broader evaluations spanning insect-plant viral systems (Catto et al., 2022). These include genes which are related to chitin remodeling, nutrient transport, oxidative stress control and critical for promoting viral mobility and persistence in insect tissues. This transcriptome flexibility gives vector insects the ability to strike a balance between their fitness costs and pathogen tolerance which is usually lacking or diminished in non-vector equivalents.

4.2 Regulatory Components: Transcription Factors, Micrornas And Epigenetics

Vector and non-vector competence is notably shaped by regulatory mechanisms such as transcription factors (TFs), microRNAs (miRNAs) and epigenetic alterations in addition to coding genes such as miRNAs function as fine-tuners of pathogen response by modulating immune signaling pathways or by post-transcriptionally suppressing antiviral genes. For example, it has been demonstrated that short RNAs produced from the RNAi machinery affect virus acquisition along with their transmission rates, particularly in phloem-feeding vectors (Ortolá and Daròs, 2024). Conversely, in the case of tissue-specificity, methylation and histone changes alter chromatin accessibility with transcriptional factors like NF-κB or STAT control immunological pathways like Toll and JAK-STAT. Research on the behavior and regulation of *Anopheles* sp. demonstrated how regulatory networks govern host-seeking and immunological responses turning to affect vectorial capacity (Jenkins, 2015). Leafhoppers' intraspecies and interspecies diversity in vector competence may also be explained by epigenetic flexibility which highlights the importance of gene regulation rather than merely gene presence in vector adaptation (Ortiz, 2019).

4.3 The Expression Of Genes Plasticity And Interactions Between The Environment And Genes

Vector competence may be impacted by environmental stressors that alter gene expression through regulatory mechanisms, such as temperature, host plant quality, or virus load. Vectors can dynamically modify transcriptional responses for survival and transmission efficiency thanks to this gene-environment interaction. Non-vectors frequently lack this flexibility, which makes them less able to adjust to pathogen pressure, whereas vectors have considerable plasticity in regulating immunological, detoxification, and stress genes. Comprehending this flexibility is essential for vector control innovation and predictive modeling.

5. DEVELOPMENTS IN TECHNOLOGY AND METHODOLOGY

Now-a-days, technology advancements which allow for in and out analysis of insect genomes, gene regulation, gene activity and host-pathogen interactions have been completely modified or changed the field of experiment regarding vector and non-vector competence. The central of this change or modifications are bioinformatics pipelines, genome editing tools with many sophisticated sequencing platforms and opening up new possibilities for control methods.

5.1 Long-Read and Next-Generation Sequencing Technologies

As already mentioned, that rapid and high-throughput genome and transcriptome sequencing of a variety of insect species is now possible. Because there are next-generation sequencing (NGS) systems like Illumina. However, their short read lengths frequently lead to fragmented genome assemblies, especially in species with complex genomic architecture (Haynes et al., 2019). Therefore it is good to be revealed that long-read sequencing technologies such as PacBio SMRT, Oxford Nanopore have become strong alternatives to handle these. By generating longer, continuous and repetitive sequence reads, can secure repetitive sequences as these systems enhance structural resolution and genome completeness (Hamim et al., 2022). Moreover, to monitor vectors and vector-borne infections, nanopore-based techniques and technologies are best suited for field-based genomic surveillance (Kipp, 2024). Besides, the usefulness of long-read data has also developed the understanding and importance of non-coding RNAs, following structural variants along with transposable elements in vector genomes (Malla et al., 2025).

5.2 Functional Genomics: Transgenesis, RNA Interference, And Crispr/Cas9

Functional genomic techniques along with gene manipulation features has made easier to study vector competency features. Actually, to hide up important genes involved in immunity development and metabolism of insects, RNA interference (RNAi) can be still a fundamental technique (Kourti et al., 2017). Similarly, Paratransgenesis is a novel biological control technique that alters symbiotic bacteria within vectors to prevent the spread of pathogens (Ogaugwu and Durvasula, 2017). However, insect gene editing has been transformed more recently by CRISPR/Cas9 technology. Never before accuracy in functional analysis is provided by this method by permitting targeted knockouts or insertions (Cui et al., 2017). Ticks and dipterans are among the insect taxa to which CRISPR has been effectively practiced allowing for the development of gene drive constructs and knock-in reporter lines and infection-resistant mutants (Hillary and Ceasar, 2024; Ngando et al., 2022). These tools significantly accelerate the validation of vector competence-related genes and are now integral to the development of transgenic control lines.

5.3 Annotation Gaps and Bioinformatics Tools

Comparative bioinformatics are crucial with the growth of genomic data for gene family classification, regulatory element prediction and orthology analysis. Annotations continue to be a bottleneck in this area but not like a model particularly for insects. Despite this, cross-species comparisons are restricted by the absence of carefully selected gene models and partial reference genomes (Morales-Hojas et al., 2018). With the help of better datasets and algorithms, different endeavours are being made to annotate transcription factor networks- piRNA and loci (Halbach and van Rij, 2024).

5.4 Continued Difficulties and Upcoming Requirements

There is nothing in the world that hasn't any disappointments. Despite tremendous advancements, several problems still exist. A lack of defined methodologies or technical obstacles frequently restrict functional validation and many vector genomes are still unfinished or inadequately documented. It is revealed in (Abbas, n.d.; Compton et al., 2020)'s study that advancement of vector genomics will require the integration of multi-omics methodologies, enhanced bioinformatics frameworks, and international data-sharing programs. So, filling these gaps will improve genomic data's predictive ability and encourage creative, genetically based vector insect control methods.

6. CO-ADAPTATION AND EVOLUTIONARY VIEWS

6.1 Vectors and Pathogens Coevolved

A highly specialized genomic interaction in vector insects and non-vector insects is influenced by natural selection, speciation, co-adaptation and ecological stressors has been emerged as a result of the evolutionary arms race between insect vectors and the diseases they spread. Key observations into the emergence and diversification of vector and non-vector competence across insect taxa can be gained by comprehending the biological underpinnings of this co-evolution. Vector-pathogen

connections are shaped by finely tailored reciprocal selection pressures. In order to acquire and spread pathogens, at the same time preserving host viability, vectors must evolve some physiological processes. To control tissue barriers and vector immunity, pathogens then develop evasion techniques (de Angeli Dutra et al., 2022; Lewis et al., 2023). Molecular co-evolution is driven by this mutual adaptation demonstrated by conserved gene expression patterns for tissue tropism, immunological suppression and microbial interactions in long-associated vector-pathogen couples.

6.2 Gene Family Divergence And Natural Selection

There are indications of rapid divergence with positive selection in gene families in vector species related to immunity mechanisms, detoxification and neuro reception activity including cytochrome P450s-odorant-binding proteins and RNAi effectors. When these are in reaction to anthropogenic stressors like insecticide exposure, this variation can easily be noticed. Resistance kind of genes have seen significant selection and structural evolution similarly with this fact that target pyrethroids in *Aedes aegypti* (H. Chen et al., 2022; Love et al., 2023). Since they increase survival in negative conditions and inspire a wider range of host-seeking behavior or for longer period of time or longer lifespan these adaptive modifications frequently correspond with increased vector base capacity. Another factor contributing to genetic difference of vector and non-vector is several environmental changes and domestication behavior. Exaptation, in which preexisting genes are repurposed for novel environmental challenges, is evident in urban-adapted mosquito populations, indicating a complex history of adaptation at both the coding and regulatory levels (Fifer et al., 2025; Lozada-Chávez et al., 2023).

6.3 Selective Sweeps in Vector Traits and Population Genomics

Characteristics including host choice for viral susceptibility and ecological tolerance showing various genetically sweeps have been found by population different genomic researches. These sweeps can cause beneficial alleles to be fixed quickly within vector populations when substantial vector control pressures are present. For example- *Culicoides obsoletus* having climate-driven adaptability and local vector competence are correlated with substantial genetic divergence among populations (Aguilar-Vega et al., 2021). Besides, changes in allele frequency in *Aedes* populations around the world are a result of continuous selection at loci affecting vector-pathogen- non-vector compatibility and olfaction as well as pesticide resistance. These evolutionary discoveries not only broaden our knowledge of vector biology but also emphasize the necessity of adaptive management approaches that take into account as it is the evolutionary dynamics that both vectors and the diseases they carry. Early warnings of new vector-pathogen linkages or growing resistance may be possible when evolutionary genomics and vector surveillance are combined effectively and implied positively.

7. PROSPECTIVE PATHS AND USES

Utilizing cutting-edge molecular techniques and integrative approaches is key to the future of vector management as the burden of vector-borne diseases continues to increase globally. Predictive genomics as well as multi-omics analysis -synthetic biology, socio-ethical and economical foresight may come together to revolutionize our understanding and management of vector competence in both natural and artificial populations, according to new research.

7.1 Vector Competence Assessment Using Predictive Genomics

Genetic signals linked to host choice, their immunological regulation, pathogen interaction and predictive genomics provides a way to predict vector potential. Researchers can predict vector insect risks in recently emerging species or populations by identifying genotypes and regulatory components linked for higher transmission efficiency. These observations are especially helpful for identifying a tracking species critical invasiveness, urban adaption, sub-urban adaptations, rural adaptations and pesticide resistance (Olagunju, 2024). Tools like machine learning and network-based techniques can further improve prediction accuracy when applied to ecological or environmental data.

7.2 Multi-Omics Integrative Methods

As in the previous sections mentioned that systems- level perspective that incorporates genomes, transcriptomics, epigenomics and metabolomics is necessary for vector competence. During pathogen infection, these multi-omics techniques can identify metabolic changes, post-transcriptional regulation, and functional pathways in both vectors and host microbiomes (Van den Eynde et al., 2022). Comparative studies between vector and non-vector species are also supported by multi-layered datasets aid in the breakdown of intrinsic competence processes. These platforms will be crucial for creating mechanistic models of vector-pathogen-host

interactions as data integration pipelines advance.

7.3 Precision Vector Control and Synthetic Biology

A new avenue for next-generation vector control is presented by synthetic biology as targeted, noticeable and self-sustaining solutions for disease transmission are provided by genetically modified mosquitoes, such as those that carry gene drive components or genes that resist pathogens. It is possible to create synthetic regulatory circuits that limit the vector and non-vector competence in particular environmental circumstances or developmental stages (Abbasi, n.d.). Moreover, microbiome-based strategies have drawn interest as paratransgenesis techniques, in which antipathogen components are expressed by engineered bacteria inside vectors. By stopping the reproduction of pathogens without endangering non-target organisms, demonstrated the potential of microbial agents in precision biocontrol as well as population suppression (Katak et al., 2023).

7.4 Ethical, Ecological and Societal Considerations

Use of cutting-edge biotechnology and genetical techniques depicts essential ethical as well as ecological issues notwithstanding their potential. Interestingly, if the gene drives are not controlled enough, they could even alter ecosystems irrevocably. International policy frameworks, community acceptability are essential for directing responsible implementation. To avoid technological disparities and unintended consequences, all future applications must be based on transparency in scientific communication, public participations and fair access to genetic technologies (Abbasi, n.d.; Olagunju, 2024).

8. CONCLUSION AND RECOMMENDATION

All comprehension regarding this molecular of insect vector competence foundation has been significantly acknowledged and improved by comparative genomics. It is revealed in this review that vector insects are different from non-vector insects by variations in gene families associated with innate immune pathways (Toll, IMD, JAK-STAT), detoxification, chemosensory receptors, various enzymes and salivary gland proteins. Most important information about vector-pathogen compatibility has been provided by functional genomics research, such as transcriptome and epigenetic profiling, which has clarified how gene expression dynamically reacts to pathogen challenge. Use of techniques like CRISPR/Cas9, microbiome engineering, RNA interference especially micro-RNA inferences- these discoveries are currently being turned into cutting-edge vector control technologies that provide focused and long-lasting treatments. According to the study, predictive modeling of vector competence and disease onset will require the use of integrated multiomics techniques in conjunction with evolutionary and population genetics. Adding into this promising pathway for lowering vectorial capability in ecologically safe methods are made possible by the biotechnological and genetical potential of synthetic biology and symbiotic microorganisms. So. Future research should prioritize integrative multiomics approaches, functional validation of candidate genes using RNAi, CRISPR and genome insights for vector control strategies. Besides, for sustainable vector-borne illness control, effective and responsible implementation of these advancements necessitates careful consideration of ethical, ecological along with sociological considerations.

REFERENCES

Abbasi, E. (n.d.). Innovative approaches to vector control: Integrating genomic, biological, and chemical strategies. *Annals of Medicine and Surgery*, Pp. 10–1097.

Acharya, P., Singh, U. S., Rajamannar, V., Muniaraj, M., Nayak, B., and Das, A., 2024. Genome resequencing and genome-wide polymorphisms in mosquito vectors *Aedes aegypti* and *Aedes albopictus* from south India. *Scientific Reports*, 14(1), 22931.

Aguilar-Vega, C., Rivera, B., Lucientes, J., Gutiérrez-Boada, I., and Sánchez-Vizcaíno, J. M., 2021. A study of the composition of the *Obsoletus* complex and genetic diversity of *Culicoides obsoletus* populations in Spain. *Parasites and Vectors*, 14(1), 351.

Arensburger, P., Hice, R. H., Wright, J. A., Craig, N. L., and Atkinson, P. W., 2011. The mosquito *Aedes aegypti* has a large genome size and high transposable element load but contains a low proportion of transposon-specific piRNAs. *BMC Genomics*, 12, Pp. 1–23.

Arismendi, N., 2014. Survival, fecundity and body mass of *Amplicephalus curtulus* (Hemiptera: Cicadellidae) influenced by the infection of 'Candidatus Phytoplasma ulmi'(16SrV-A). *TRANSMISSION OF 'Candidatus Phytoplasma Ulmi'* (16SrV-A, Elm Yellows) By *Amplicephalus Curtulus* (Hemiptera: Cicadellidae): Effects On the Activity of Detoxifying Enzymes and Fitness of Its Vector, 131.

Black IV, W. C., Snell, T. K., Saavedra-Rodriguez, K., Kading, R. C., and Campbell, C. L., 2021. From global to local—New insights into features of pyrethroid detoxification in vector mosquitoes. *Insects*, 12(4), Pp. 276.

Catto, M. A., Labadie, P. E., Jacobson, A. L., Kennedy, G. G., Srinivasan, R., and Hunt, B. G., 2023. Pest status, molecular evolution, and epigenetic factors derived from the genome assembly of *Frankliniella fusca*, a thysanopteran phytoparvirus vector. *BMC Genomics*, 24(1), Pp. 343.

Catto, M. A., Mugerwa, H., Myers, B. K., Pandey, S., Dutta, B., and Srinivasan, R., 2022. A review on transcriptional responses of interactions between insect vectors and plant viruses. *Cells*, 11(4), 693.

Chen, H., Bhowmick, B., Tang, Y., Lozano-Fernandez, J., and Han, Q., 2022. Biochemical evolution of a potent target of mosquito larvicide, 3-Hydroxykynurene Transaminase. *Molecules*, 27(15), 4929.

Chen, T., Jia, Y., Chen, J., and Qi, G., 2024. Comparative transcriptome analysis of whiteflies raised on cotton leaf curl Multan virus-infected cotton plants. *Frontiers in Veterinary Science*, 11, 1417590.

Chen, W., Guo, W., Zhang, C., Zhao, Y., Lei, Y., Chen, C., Wei, Z., and Dai, H., 2025. MdLRR-RLK1-MdATG3 module enhances the resistance of apples to abiotic stress via autophagy. *The Plant Journal*, 121(2), e17211.

Compton, A., Sharakhov, I. V., and Tu, Z., 2020. Recent advances and future perspectives in vector-omics. *Current Opinion in Insect Science*, 40, Pp. 94–103.

Cong, Y., Ye, X., Mei, Y., He, K., and Li, F., 2022. Transposons and non-coding regions drive the intrafamily differences of genome size in insects. *IScience*, 25(9).

Cui, Y., Sun, J., and Yu, L., 2017. Application of the CRISPR gene-editing technique in insect functional genome studies—a review. *Entomologia Experimentalis et Applicata*, 162(2), Pp. 124–132.

de Angelis Dutra, D., Poulin, R., and Ferreira, F. C., 2022. Evolutionary consequences of vector-borne transmission: How using vectors shapes host, vector and pathogen evolution. *Parasitology*, 149(13), Pp. 1667–1678.

Douglas, A. E., 2014. The molecular basis of bacterial-insect symbiosis. *Journal of Molecular Biology*, 426(23), Pp. 3830–3837.

Fifer, J. E., Amoa-Bosompem, M., Nelson, D., Terner, E. R., Clifford, A. J., Tan, S., and Rose, N. H., 2025. Genomics of urban adaptation and exaptation in mosquitoes and consequences for vectorial capacity. *Current Opinion in Insect Science*, 70, 101384.

Halbach, R., and van Rij, R. P., 2024. Annotation of piRNA source loci in the genome of non-model insects. *bioRxiv*, 2024–08.

Hamim, I., Sekine, K.-T., and Komatsu, K., 2022. How do emerging long-read sequencing technologies function in transforming the plant pathology research landscape? *Plant Molecular Biology*, 110(6), Pp. 469–484.

Haynes, E., Jimenez, E., Pardo, M. A., and Helyar, S. J., 2019. The future of NGS (Next Generation Sequencing) analysis in testing food authenticity. *Food Control*, 101, Pp. 134–143.

Hillary, V. E., and Ceasar, S. A., 2024. Using CRISPR-Cas9 to create knockout mutants in insects. *CABI Reviews*, 19(1).

Hirabayashi, K., Sakamoto, H., Sawabe, K., Sasaki, T., Nishimura, M., Hirabayashi, K., Sakamoto, H., Sawabe, K., Sasaki, T., and Nishimura, M., 2024. Biology of Non-Vector Arthropods. In *Medical Entomology in Asia* (pp. 231–277). Springer.

Jenkins, A. M., 2015. Analysis of anopheline mosquito behavior and identification of vector control targets in the post-genomic era.

Joshi, H., 2024. Artificial Intelligence in Project Management: A Study of The Role of AI-Powered Chatbots in Project Stakeholder Engagement. *Indian Journal of Software Engineering and Project Management (IJSEPM)*, 4(1), Pp. 20–25.

Jupatanakul, N., Sim, S., and Dimopoulos, G., 2014. The insect microbiome modulates vector competence for arboviruses. *Viruses*, 6(11), Pp. 4294–4313.

Katak, R. de M., Cintra, A. M., Burini, B. C., Marinotti, O., Souza-Neto, J. A., and Rocha, E. M., 2023. Biotechnological potential of microorganisms

for mosquito population control and reduction in vector competence. *Insects*, 14(9), 718.

Kay, G. A., 2023. Investigating the impact of insecticide exposure and resistance on the vector competence of *Anopheles gambiae* and *Aedes aegypti* for arboviruses.

Kipp, E. J., 2024. Benchmarking Novel Nanopore-Based Methods for Targeted Vector-Borne Pathogen Surveillance and Genomic Vector and Host Characterization.

Koinuma, H., Maejima, K., Tokuda, R., Kitazawa, Y., Nijo, T., Wei, W., Kumita, K., Miyazaki, A., Namba, S., and Yamaji, Y., 2020. Spatiotemporal dynamics and quantitative analysis of phytoplasmas in insect vectors. *Scientific Reports*, 10(1), 4291.

Kourti, A., Swevers, L., and Kontogiannatos, D., 2017. In Search of New Methodologies for Efficient Insect Pest Control: "The RNAi "Movement." In *Biological control of pest and vector insects*. IntechOpen.

Lewis, J., Galichotte, E. N., Randall, J., Glass, A., Foy, B. D., Ebel, G. D., and Kading, R. C., 2023. Intrinsic factors driving mosquito vector competence and viral evolution: A review. *Frontiers in Cellular and Infection Microbiology*, 13, 1330600.

Li, D., Zhang, C., Tong, Z., Su, D., Zhang, G., Zhang, S., Zhao, H., and Hu, Z., 2020. Transcriptome response comparison between vector and non-vector aphids after feeding on virus-infected wheat plants. *BMC Genomics*, 21, 1-14.

Li, J., Mao, Y., Yi, J., Lin, M., Xu, H., Cheng, Y., Wu, H., and Liu, J., (2023). Induced expression modes of genes related to Toll, Imd, and JAK/STAT signaling pathway-mediated immune response in *Spodoptera frugiperda* infected with *Beauveria bassiana*. *Frontiers in Physiology*, 14, 1249662.

Li, S., Luo, X., Zhang, Y., Zhang, Z., Yang, X., Zhou, X., Wang, X., OuYang, X., Qu, X., and Zhang, D., 2025. A viral movement protein mediates host volatile biosynthesis to co-attract vectors and non-vectors and enhances viral infection. *Frontiers in Plant Science*, 16, 1551362.

Liu, F., Chen, Z., Ye, Z., and Liu, N., 2021. The olfactory chemosensation of hematophagous hemipteran insects. *Frontiers in Physiology*, 12, 703768.

Love, R. R., Sikder, J. R., Vivero, R. J., Matute, D. R., and Schrider, D. R., 2023. Strong positive selection in *Aedes aegypti* and the rapid evolution of insecticide resistance. *Molecular Biology and Evolution*, 40(4), msad072.

Lozada-Chávez, A., Lozada-Chávez, I., Alfano, N., Palatini, U., Sogliani, D., Elfekih, S., Degefa, T., Sharakhova, M., Badolo, A., and Patchara, S., 2023. Molecular signature of domestication in the arboviral vector *Aedes aegypti*. *bioRxiv*, 2023-03.

Malla, W. A., Singh, K., Ayman, N., Boro, C., Devi, N. C., Mech, P., Siddiqui, N., Anvikar, A. R., and Bharti, P. K., 2025. Genome-wide cataloging and orthology analysis of long noncoding RNA expression in three species of *Anopheles* mosquito. *BMC Genomics*, 26(1), Pp. 1-14.

Morales-Hojas, R., Hinsley, M., Armean, I. M., Silk, R., Harrup, L. E., Gonzalez-Uriarte, A., Veronesi, E., Campbell, L., Nayduch, D., and Saski, C., 2018. The genome of the biting midge *Culicoides sonorensis* and gene expression analyses of vector competence for bluetongue virus. *BMC Genomics*, 19, Pp. 1-16.

Nganso, B. T., Pines, G., and Soroker, V., 2022. Insights into gene manipulation techniques for *Acari* functional genomics. *Insect Biochemistry and Molecular Biology*, 143, 103705.

Ogaugwu, C. E., and Durvasula, R. V., 2017. Developing the Arsenal Against Pest and Vector Dipterans: Inputs of Transgenic and Paratransgenic. *Biological Control of Pest and Vector Insects*, 325.

Olagunju, E. A., 2024. Lowering vector competence in insects: A review. *The Journal of Basic and Applied Zoology*, 85(1), 33.

Ortiz, C. O. A., 2019. Comparative genomics of six species of *Deltocephaline* leafhoppers to discover vector competence-related genes.

Ortolá, B., and Daròs, J.-A., 2024. RNA interference in insects: From a natural mechanism of gene expression regulation to a biotechnological crop protection promise. *Biology*, 13(3), 137.

Raji, J. I., and Potter, C. J., 2022. Chemosensory ionotropic receptors in human host-seeking mosquitoes. *Current Opinion in Insect Science*, 54, 100967.

Reitmayer, C. M., Evans, M. V., Miazgowicz, K. L., Newberry, P. M., Solano, N., Tesla, B., and Murdock, C. C., 2020. *Mosquito—Virus Interactions. Population Biology of Vector-Borne Diseases*, 191.

Rolandelli, A., Nascimento, A. E., Silva, L. S., Rivera-Pomar, R., and Guarneri, A. A., 2021. Modulation of IMD, Toll, and Jak/STAT immune pathways genes in the fat body of *Rhodnius prolixus* during *Trypanosoma rangeli* infection. *Frontiers in Cellular and Infection Microbiology*, 10, 598526.

Shrestha, A., Champagne, D. E., Culbreath, A. K., Abney, M. R., and Srinivasan, R., 2019. Comparison of transcriptomes of an orthotospovirus vector and non-vector thrips species. *PLoS One*, 14(10), e0223438.

Van den Eynde, C., Sohier, C., Matthijs, S., and De Regge, N., 2022. Japanese encephalitis virus interaction with mosquitoes: A review of vector competence, vector capacity and mosquito immunity. *Pathogens*, 11(3), 317.

Wang, X., Lu, H., and Li, J., 2024. Mechanisms of Mosquito-Mediated Pathogen Transmission to Humans. *Journal of Mosquito Research*, 14.

Weiss, B., and Aksoy, S., 2011. Microbiome influences on insect host vector competence. *Trends in Parasitology*, 27(11), Pp. 514-522.

Widlake, E., 2024. Investigating multiple factors affecting the successful infection and transmission of arboviruses.