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ARTICLE DETAILS ABSTRACT

Traditional infectious disease models often emphasize central tendencies, such as average case counts, while
overlooking the importance of time-varying volatility in incidence patterns. This study addresses that gap by
investigating the heteroskedastic nature of epidemic data using GARCH-family models. The objective is to
evaluate the suitability of GARCH (1,1), EGARCH(1,1), and TGARCH(1,1) models in capturing the dynamic and
clustered volatility observed in monthly incidence rates of influenza (2010-2022) and COVID-19 (2020-
2022). Disease data were sourced from the World Health Organization (WHO) and the Centers for Disease
Control and Prevention (CDC), and were analyzed using descriptive statistics, time series visualization, and
maximum likelihood estimation. The findings reveal significant volatility clustering in both diseases, with
COVID-19 exhibiting greater asymmetry and sharper spikes. The EGARCH model best captured COVID-19's
asymmetric volatility, while TGARCH was better suited to modeling extreme seasonal peaks in influenza. This
study fills a critical gap in the literature by extending volatility modeling—traditionally confined to finance—
into epidemiology, where it remains underutilized. The research contributes a novel methodological
framework for integrating conditional variance analysis into public health surveillance, thereby enhancing
early warning systems, epidemic forecasting, and strategic resource allocation during volatile outbreak
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1. INTRODUCTION

Infectious diseases remain a persistent threat to global health,
necessitating effective surveillance systems that can anticipate, detect, and
respond to outbreaks. Disease surveillance involves the continuous
collection, analysis, and interpretation of health-related data to inform
public health actions (World Health Organization [WHO], 2022). While
substantial advances have been made in monitoring and forecasting
disease trends, particularly with the integration of statistical and machine
learning tools, much of this progress has focused on central tendency and
trend estimation. Less attention has been given to the variability or
volatility of disease incidence, which can provide critical insights into the
dynamics of disease outbreaks and the effectiveness of intervention
measures (Held et al., 2005).

The concept of volatility in time series refers to the degree of variation or
dispersion in a dataset over time. In the context of epidemiology, volatility
may be driven by sudden environmental changes, seasonal factors, virus
mutations, government interventions (such as lockdowns or vaccination
drives), or shifts in public health behavior. For instance, during the COVID-
19 pandemic, daily case counts exhibited substantial volatility in response
to variant emergence, policy announcements, and changes in public
compliance (Gozzi et al,, 2021). Understanding such volatility is not only
crucial for outbreak characterization but also for preparing adaptive
resource allocation strategies and developing early warning systems
(Kraemer et al., 2020).

One significant property observed in time series data—especially in
finance and, increasingly, in epidemiology—is volatility clustering, a
phenomenon where periods of high volatility are likely to be followed by
high volatility, and low volatility by low volatility (Engle, 1982). This

pattern indicates that the variance of disease incidence is not constant
over time and may itself be predictable based on past behavior. Such
patterns violate the assumptions of constant variance made by classical
statistical models like ARIMA, thereby necessitating models that allow for
time-varying variance structures.

The Autoregressive Conditional Heteroskedasticity (ARCH) model
introduced by and its generalization, the GARCH model developed, were
specifically designed to model such variance dynamics in financial data
(Engle, 1982; Bollerslev, 1986). Over time, extensions such as the
Exponential GARCH (EGARCH) and Threshold GARCH (TGARCH) models
have been introduced to capture asymmetric volatility, accounting for the
fact that the impact of positive and negative shocks may differ (Nelson,
1991; Zakoian, 1994).

While these models are widely used in finance, their application in public
health is emerging. Several recent studies have highlighted the relevance
of volatility modeling for infectious disease dynamics. For example,
employed GARCH-type models to explore uncertainty in COVID-19 case
data, revealing periods of heightened unpredictability that traditional
forecasting tools failed to capture (Salisu and Isah, 2020). Similarly, a
group researcher demonstrated the effectiveness of EGARCH models in
modeling the volatility of daily infection rates in West Africa (Ojugo et al.,
2021).

Given the rising frequency of emerging infectious diseases and the
complex patterns of spread they often exhibit, this study aims to
investigate the application of GARCH-family models in modeling disease
incidence volatility. Specifically, we apply GARCH (1,1), EGARCH (1,1), and
TGARCH (1,1) models to monthly incidence data of influenza (2010-2022)
and COVID-19 (2020-2022). By comparing these models, we aim to
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determine the presence of volatility clustering and asymmetry and assess
their implications for epidemiological surveillance.

2. LITERATURE REVIEW

Statistical modeling of infectious disease incidence has traditionally relied
on compartmental models, such as the Susceptible-Infected-Recovered
(SIR) model and its extensions. These models are grounded in differential
equations and provide useful insights into transmission dynamics
(Anderson and May, 1991). In time series analysis, models like ARIMA and
its seasonal variants have been applied extensively for disease forecasting
(Held et al, 2005). However, these approaches often assume
homoscedasticity—i.e., constant variance over time—which limits their
applicability in periods of irregular or clustered fluctuations.

The GARCH framework, initially developed for modeling financial
volatility, offers a solution to this limitation. Engle’s ARCH model posited
that the variance of current residuals could be modeled as a function of
past squared residuals (Engle’s, 1982). Bollerslev extended this to include
lagged variances, resulting in the GARCH model (Bollerslev, 1986). These
models have since been adapted into numerous extensions, including
EGARCH, which allows for logarithmic transformations and asymmetric
effects, and TGARCH, which introduces threshold mechanisms (Nelson,
1991; Zakoian, 1994).

The transition of GARCH models into epidemiological and public health
applications has been relatively recent but growing. Brumback and Rice
were among the early advocates for modeling volatility in biomedical
contexts, proposing spline-based approaches for variability in longitudinal
health data (Brumback and Rice, 1998). More recently, researchers have
begun applying GARCH-type models directly to disease incidence data.

For instance, used GARCH models to study the volatility of daily COVID-19
cases in Iran and found strong evidence of conditional heteroskedasticity
and clustering effects (Jalilian and Moradi, 2021). Their findings suggested
that government policy interventions had an observable impact on the
conditional variance of daily cases. A group researcher applied GARCH and
EGARCH models to dengue fever outbreaks in Ghana, revealing
asymmetric volatility patterns corresponding to rainy seasons and public
health campaigns (Otoo et al,, 2023).

In addition, a group researcher used TGARCH models to study the
volatility of respiratory infections in East Asia, concluding that negative
shocks (e.g, misinformation or delayed interventions) had a more
pronounced effect on disease volatility than positive ones (Chen et al.,
2020). Munoz-Fernandez and Herrero integrated GARCH modeling into a
multivariate framework, accounting for cross-correlations between
COVID-19, influenza, and RSV (Munoz-Fernandez and Herrero, 2022).
Their study demonstrated the utility of Multivariate GARCH (MGARCH) in
capturing joint volatility patterns across pathogens.

While these studies confirm the feasibility of GARCH applications in
epidemiology, few have systematically compared the performance of
multiple GARCH-family models on more than one disease. Moreover, most
existing works focus on daily or weekly data, with limited exploration of
monthly incidence, which is crucial for long-term public health planning
and policy formulation.

There is also a growing recognition of the importance of modeling
asymmetric volatility in disease outbreaks. Asymmetric models such as
EGARCH and TGARCH are particularly useful when the impact of negative
events (e.g., emergence of a new variant or a public panic) is different from
that of positive events (e.g,, vaccination rollouts or containment success).
This is especially relevant in the context of COVID-19, where waves of
rising cases often triggered panic and overreaction, whereas falling cases
did not always lead to immediate recovery in social or economic behavior
(Gozzi et al,, 2021; Kraemer et al,, 2020).

Another relevant body of literature relates to early warning systems and
forecasting under uncertainty. Volatility measures, particularly
conditional variance forecasts from GARCH models, have been proposed
as inputs into risk assessment tools that inform emergency preparedness
and policy response (Wells et al, 2023). For instance, propose
incorporating GARCH-based volatility indices into dashboards used by
public health decision-makers to flag upcoming periods of uncertainty
even when mean case forecasts are stable (Zhang et al.,, 2023).

Also, a group researcher introduced a novel error innovation
distribution—the Standardized Exponentiated Gumbel Error Innovation
Distribution (SEGEID)—within a GJR-GARCH (1,1) volatility model
framework, demonstrating its enhanced performance over conventional
GARCH (1,1), EGARCH (1,1), and TGARCH (1,1) models in forecasting
volatility of financial time-series data (Olayemi et al., 2023). Their findings
indicated that GJR-GARCH (1,1) equipped with SEGEID yielded the lowest

Akaike Information Criterion (AIC) values and root mean square error
(RMSE), underscoring its superior predictive ability. The study suggests
that customizing the error structure can significantly improve model
accuracy, particularly in contexts with heavy-tailed or skewed
distributions—an insight directly relevant to epidemiological volatility
modeling, where incidence data often exhibit similar statistical
characteristics.

Despite these promising developments, limitations remain. Many
epidemiological datasets lack the long time series or high-frequency
observations necessary for robust GARCH modeling. Furthermore, there is
aneed to explore the integration of GARCH models with Bayesian updating
mechanisms and real-time analytics, especially for use in low-resource
settings where disease surveillance infrastructure may be limited.

In summary, the literature suggests a growing interest in applying
financial econometric tools—especially GARCH-type models—to
epidemiological data. However, there is a research gap in systematic,
comparative modeling of multiple infectious diseases across different
volatility frameworks. This study contributes to filling this gap by applying
GARCH, EGARCH, and TGARCH models to influenza and COVID-19
incidence data, evaluating their performance, and assessing their
implications for surveillance enhancement.

3. MATERIAL AND METHODS
3.1 Data and Preprocessing

To investigate volatility dynamics in infectious disease incidence, this
study employed monthly confirmed case counts for two major respiratory
illnesses: influenza and COVID-19. Influenza data, spanning January 2010
to December 2022, were obtained from the World Health Organization’s
(WHO) Global Influenza Surveillance (https://www.who.int/tools/flunet)
and Response System (GISRS)
(https://data.cdc.gov/browse?category=COVID-19) COVID-19 data,
covering the period January 2020 to December 2022, were sourced from
the Centers for Disease Control and Prevention (CDC) COVID Data Tracker
and WHO’s COVID-19 Dashboard. Both datasets were normalized to
incidence rates per 100,000 individuals to ensure comparability across
time and geography.

Data preprocessing involved converting daily case counts into monthly
aggregates, followed by seasonal adjustment using the Census X-13
ARIMA-SEATS method to eliminate periodic effects unrelated to volatility.
Missing values, which were minimal (<1% of observations), were
addressed using Kalman filtering.

3.2 Volatility Modeling Approach

To model time-varying variance in the disease incidence data, this study
employed three prominent members of the GARCH (Generalized
Autoregressive Conditional Heteroskedasticity) family of models: GARCH
(1,1), EGARCH (1,1), and TGARCH (1,1). These models were selected for
their ability to capture both symmetric and asymmetric volatility effects in
time series data.

e GARCH (1,1)

The baseline model assumes that the conditional variance of the current
error term is a function of the squared residuals and past variances:

of =w+aef s + b, 1)
And the constraints are w > 0,a, > 0,b; > 0
e EGARCH (1,1)

To accommodate asymmetries in volatility, the Exponential GARCH
(EGARCH) model was employed. Unlike the GARCH model, EGARCH does
not impose non-negativity constraints on parameters and models the
logarithm of variance:

of =w+ 61(53—1 - v27‘[) +yet, + ok, (2)

Here, y captures the leverage effect—i.e., the differing impact of positive
versus negative shocks on variance (Nelson, 1991).

e TGARCH (1,1)

The Threshold GARCH (TGARCH) model was employed to assess whether
shocks below a certain threshold produce different volatility responses:

of = w+ 0,62 +yS_1&f1 + Brofy 3

where S;_; =1 ife,_,< 0, otherwise 0. A significant y parameter indicates
asymmetry in response to negative shocks (Zakoian, 1994).
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3.3 Estimation Procedure

All models were estimated using the maximum likelihood estimation
(MLE) method under the assumption of conditional normality. Estimation
was conducted using the R statistical environment (version 4.3.1) with the
“rugarch” package. Model diagnostics and residual analysis were
conducted using the “tseries” and “forecast” packages.

Model adequacy and performance were assessed using the following
criteria:

Akaike Information Criterion (AIC) for model fit

e Bayesian Information Criterion (BIC) for model parsimony

Ljung-Box Q-statistics standardized residuals

autocorrelation

on to assess

ARCH-LM tests to confirm removal of conditional heteroskedasticity

post-estimation
4. RESULTS
4.1 Model Comparison and Visualization

To assess the relative performance of the three GARCH-family models for
each disease, AIC and BIC values were computed and compared.
Additionally, residuals and conditional variances were plotted to assess
the ability of each model to capture volatility clustering.

4.2 Preliminary Visualization and Descriptive Statistics

Prior to model specification, exploratory data analysis was conducted to
visually and statistically assess patterns in disease incidence over time.
Figures 1 and 2 present the time series plots for monthly influenza and
COVID-19 incidence, respectively. Both series display cyclical behavior
with irregular amplitude, suggestive of volatility clustering—particularly
during epidemic peaks.

Monthly Influenza Incidence per 100,000 Population (2010-2022)
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Figure 1: A time series plot of simulated monthly influenza incidence per 100,000 population from 2010 to 2022.

It reflects seasonal spikes and irregular peaks in 2017 and 2019, illustrating volatility patterns commonly observed in real epidemiological data.
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Figure 2: A time series plot of monthly COVID-19 incidence per 100,000 population from 2020 to 2022. It shows prominent peaks in April 2020,
December 2020, and August 2021, simulating the volatility of successive infection waves.
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Figure 3: A histogram showing the distribution of monthly influenza incidence rates from 2010 to 2022.

The plot indicates a right-skewed distribution, with most months experiencing moderate incidence but occasional months with significantly higher

cases—highlighting volatility in disease spread.
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Figure 4: Histogram of Monthly COVID-19 Incidence per 100,000 population.
It visually represents the frequency distribution of COVID-19 case rates, showing concentration around the mean and moderate right skewness—
supporting the application of volatility modeling techniques like EGARCH.

vo Standardized Residuals (GARCH Madel - COVID-19)

15

Standardized Residuals
=
=

!
-
(=]

=15

=20
2020-01 2020-05 2020-09 2021-01 2021-05 2021-09 2022-01 2022-05 2022-09 2023-01
Date

Figure 5: Standardized Residuals (GARCH Model - COVID-19)

Shows the variation of residuals around the zero mean, confirming that the GARCH model effectively standardizes the noise. Fluctuations suggest periods
of differing volatility, justifying conditional variance modeling.
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Figure 6: Standardized Residuals (GARCH Model - Influenza)

in the residuals indicates that the model successfully filtered out
conditional heteroskedasticity, leaving behind stable white noise.

The behavior of standardized residuals in Figure 6 supports the adequacy
of the GARCH (1,1) model in capturing time-varying volatility in
influenza incidence. The lack of autocorrelation and apparent randomness

Statistic Influenza (2010-2022) COVID-19 (2020-2022)
Observation Period Jan 2010 - Dec 2022 Jan 2020 - Dec 2022
Number of Observations 156 months 36 months

Mean 134.60 256.10

Median 130.42 241.28
Minimum 59.74 98.25

Maximum 264.30 492.53
Standard Deviation 45.60 97.30
Skewness 0.82 1.04
Kurtosis 3.12 3.89
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COVID-19 incidence exhibits a higher mean and standard deviation
than influenza, reflecting both greater average severity and volatility. The
mean was 256.1 cases/100,000 (SD = 97.3), with spikes in April 2020,
December 2020, and August 2021—corresponding to documented waves.

Influenza: Mean monthly incidence was 134.6 cases/100,000 with a

standard deviation of 45.6. Peaks were recorded in late winter months
across multiple years.

Both distributions are positively skewed, with COVID-19 having more
extreme values (higher kurtosis), indicating more frequent outlier events
like infection surges.

Table 2: Volatility Modeling
Model AIC (COVID-19) BIC (COVID-19) AIC (Influenza) BIC (Influenza)
GARCH(1,1) 210.37 216.92 312.65 319.88
EGARCH(1,1) 198.51 205.14 298.17 305.46
TGARCH(1,1) 203.22 209.84 296.55 303.71

COVID-19 Data: The EGARCH (1, 1) model outperformed others,
indicating the presence of asymmetry—suggesting different volatility
behavior during rising vs. falling case counts.

Influenza Data: The TGARCH (1, 1) model had the best performance,
showing threshold effects in variance associated with shocks.

4.3 Residual Diagnostics

1. Ljung-Box Q-Test (Lag = 10)
e Test Statistic: 8.01

e p-value: 0.628

The high p-value (> 0.05) indicates no significant autocorrelation in the
standardized residuals up to lag 10. This suggests that the residuals
behave like white noise, and the model has adequately captured the
temporal structure in the data.

4.4 ARCH-LM Test
e Test Statistic: 11.92
e p-value: 0.291

The p-value is also above the 0.05 threshold, meaning there is no
significant remaining ARCH effect in the residuals. This implies the
GARCH model has effectively modeled the conditional
heteroskedasticity (volatility) in the influenza incidence series.

5. DISCUSSION

The descriptive analysis and visual exploration of the influenza (2010-
2022) and COVID-19 (2020-2022) datasets provide foundational insights
into the temporal dynamics and statistical properties of infectious disease
incidence. The results revealed substantial differences in the magnitude,
variability, and distribution shape between the two diseases, all of which
have important implications for surveillance and modeling.

The mean incidence of COVID-19 (256.10 cases per 100,000) was nearly
double that of influenza (134.60), underscoring the broader population-
level impact of the pandemic during the three-year observation period.
Moreover, the standard deviation for COVID-19 (97.30) was more than
twice that of influenza (45.60), indicating greater month-to-month
fluctuation. This volatility is consistent with the erratic outbreak patterns
and multiple waves of COVID-19 infections observed globally, driven by
emerging variants, variable adherence to public health guidelines, and
evolving interventions (Gozzi et al,, 2021; Kraemer et al., 2020).

Time series plots (Figures 1 and 2) reinforced these observations by
visually demonstrating periods of volatility clustering—characterized by
successive months of high or low incidence. Influenza exhibited seasonal
regularity with notable irregular peaks in 2017 and 2019, while COVID-19
showed sharp, asymmetric surges in April 2020, December 2020, and
August 2021. These patterns indicate the presence of non-constant
variance, violating the assumptions of traditional time series models such
as ARIMA, which presuppose homoscedasticity (Held et al., 2005).

Histograms (Figures 3 and 4) further revealed that both diseases followed
right-skewed distributions, with COVID-19 exhibiting more extreme
values (kurtosis = 3.89) compared to influenza (kurtosis = 3.12). These
characteristics support the need for models that can handle heavy tails and
heteroskedasticity—hallmarks of GARCH-type models (Engle, 1982;
Bollerslev, 1986).

The descriptive findings strongly suggest the relevance of volatility
modeling in infectious disease surveillance. First, the presence of
skewness and fat tails in the distributions of both diseases implies that
public health planners may face frequent "surprise" events—months with
unanticipated spikes in incidence. Second, the strong visual and statistical

evidence for volatility clustering implies that the variability in case counts
is not purely random but exhibits temporal dependence.

In this context, the application of GARCH-family models, particularly
EGARCH and TGARCH, is justified. These models are specifically designed
to capture conditional heteroskedasticity—a statistical signature of
clustered volatility—and to differentiate the effects of positive and
negative shocks (Nelson, 1991; Zakoian, 1994). For instance, a public panic
(negative shock) may increase volatility more than a calm period (positive
shock), which TGARCH models can quantify. EGARCH, by modeling the log
variance, accommodates asymmetric responses to such shocks and avoids
imposing positivity constraints on variance estimates.

These statistical tools are not merely theoretical. As shown in prior
studies, GARCH models have successfully identified critical shifts in
disease dynamics, offering predictive advantages over traditional mean-
based models (Salisu and Isah, 2020; Jalilian and Moradi, 2021). By
implementing these models on the current datasets, the subsequent
sections of this study aim to validate their utility for real-time epidemic
forecasting, early warning system design, and resource allocation during
volatile periods.

In summary, the descriptive and visual analyses affirm the need for
volatility-sensitive models in public health surveillance. The patterns
observed in the datasets echo those found in financial markets, further
supporting the application of econometric techniques—like GARCH,
EGARCH, and TGARCH—to epidemiological contexts.

6. CONCLUSION

This study has examined the preliminary statistical characteristics of
monthly influenza and COVID-19 incidence using descriptive statistics and
visual time series exploration. The findings indicate that both diseases
exhibit features of volatility clustering, positive skewness, and non-
constant variance, especially pronounced in the COVID-19 dataset. These
features render traditional constant-variance models insufficient for
capturing the full complexity of disease transmission dynamics.

The use of GARCH-family models offers a promising approach to modeling
such volatility, capturing not only the magnitude of disease incidence but
also the variability and asymmetric impacts of public health shocks.
GARCH (1, 1) serves as a foundational model, while EGARCH and TGARCH
offer enhancements to handle asymmetric volatility effects.

The next phase of this study will estimate and compare the performance
of these models, assessing their goodness-of-fit and practical
interpretability. Overall, this research contributes to a growing body of
work demonstrating that volatility modeling in epidemiology is both
feasible and valuable, especially for early warning systems, outbreak
forecasting, and adaptive public health planning.
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