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 Traditional infectious disease models often emphasize central tendencies, such as average case counts, while 
overlooking the importance of time-varying volatility in incidence patterns. This study addresses that gap by 
investigating the heteroskedastic nature of epidemic data using GARCH-family models. The objective is to 
evaluate the suitability of GARCH (1,1), EGARCH(1,1), and TGARCH(1,1) models in capturing the dynamic and 
clustered volatility observed in monthly incidence rates of influenza (2010–2022) and COVID-19 (2020–
2022). Disease data were sourced from the World Health Organization (WHO) and the Centers for Disease 
Control and Prevention (CDC), and were analyzed using descriptive statistics, time series visualization, and 
maximum likelihood estimation. The findings reveal significant volatility clustering in both diseases, with 
COVID-19 exhibiting greater asymmetry and sharper spikes. The EGARCH model best captured COVID-19's 
asymmetric volatility, while TGARCH was better suited to modeling extreme seasonal peaks in influenza. This 
study fills a critical gap in the literature by extending volatility modeling—traditionally confined to finance—
into epidemiology, where it remains underutilized. The research contributes a novel methodological 
framework for integrating conditional variance analysis into public health surveillance, thereby enhancing 
early warning systems, epidemic forecasting, and strategic resource allocation during volatile outbreak 
periods. 
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1. INTRODUCTION 

Infectious diseases remain a persistent threat to global health, 
necessitating effective surveillance systems that can anticipate, detect, and 
respond to outbreaks. Disease surveillance involves the continuous 
collection, analysis, and interpretation of health-related data to inform 
public health actions (World Health Organization [WHO], 2022). While 
substantial advances have been made in monitoring and forecasting 
disease trends, particularly with the integration of statistical and machine 
learning tools, much of this progress has focused on central tendency and 
trend estimation. Less attention has been given to the variability or 
volatility of disease incidence, which can provide critical insights into the 
dynamics of disease outbreaks and the effectiveness of intervention 
measures (Held et al., 2005). 

The concept of volatility in time series refers to the degree of variation or 
dispersion in a dataset over time. In the context of epidemiology, volatility 
may be driven by sudden environmental changes, seasonal factors, virus 
mutations, government interventions (such as lockdowns or vaccination 
drives), or shifts in public health behavior. For instance, during the COVID-
19 pandemic, daily case counts exhibited substantial volatility in response 
to variant emergence, policy announcements, and changes in public 
compliance (Gozzi et al., 2021). Understanding such volatility is not only 
crucial for outbreak characterization but also for preparing adaptive 
resource allocation strategies and developing early warning systems 
(Kraemer et al., 2020). 

One significant property observed in time series data—especially in 
finance and, increasingly, in epidemiology—is volatility clustering, a 
phenomenon where periods of high volatility are likely to be followed by 
high volatility, and low volatility by low volatility (Engle, 1982). This 

pattern indicates that the variance of disease incidence is not constant 
over time and may itself be predictable based on past behavior. Such 
patterns violate the assumptions of constant variance made by classical 
statistical models like ARIMA, thereby necessitating models that allow for 
time-varying variance structures. 

The Autoregressive Conditional Heteroskedasticity (ARCH) model 
introduced by and its generalization, the GARCH model developed, were 
specifically designed to model such variance dynamics in financial data 
(Engle, 1982; Bollerslev, 1986). Over time, extensions such as the 
Exponential GARCH (EGARCH) and Threshold GARCH (TGARCH) models 
have been introduced to capture asymmetric volatility, accounting for the 
fact that the impact of positive and negative shocks may differ (Nelson, 
1991; Zakoian, 1994). 

While these models are widely used in finance, their application in public 
health is emerging. Several recent studies have highlighted the relevance 
of volatility modeling for infectious disease dynamics. For example, 
employed GARCH-type models to explore uncertainty in COVID-19 case 
data, revealing periods of heightened unpredictability that traditional 
forecasting tools failed to capture (Salisu and Isah, 2020). Similarly, a 
group researcher demonstrated the effectiveness of EGARCH models in 
modeling the volatility of daily infection rates in West Africa (Ojugo et al., 
2021). 

Given the rising frequency of emerging infectious diseases and the 
complex patterns of spread they often exhibit, this study aims to 
investigate the application of GARCH-family models in modeling disease 
incidence volatility. Specifically, we apply GARCH (1,1), EGARCH (1,1), and 
TGARCH (1,1) models to monthly incidence data of influenza (2010–2022) 
and COVID-19 (2020–2022). By comparing these models, we aim to 
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determine the presence of volatility clustering and asymmetry and assess 
their implications for epidemiological surveillance. 

2. LITERATURE REVIEW 

Statistical modeling of infectious disease incidence has traditionally relied 
on compartmental models, such as the Susceptible-Infected-Recovered 
(SIR) model and its extensions. These models are grounded in differential 
equations and provide useful insights into transmission dynamics 
(Anderson and May, 1991). In time series analysis, models like ARIMA and 
its seasonal variants have been applied extensively for disease forecasting 
(Held et al., 2005). However, these approaches often assume 
homoscedasticity—i.e., constant variance over time—which limits their 
applicability in periods of irregular or clustered fluctuations. 

The GARCH framework, initially developed for modeling financial 
volatility, offers a solution to this limitation. Engle’s ARCH model posited 
that the variance of current residuals could be modeled as a function of 
past squared residuals (Engle’s, 1982). Bollerslev extended this to include 
lagged variances, resulting in the GARCH model (Bollerslev, 1986). These 
models have since been adapted into numerous extensions, including 
EGARCH, which allows for logarithmic transformations and asymmetric 
effects, and TGARCH, which introduces threshold mechanisms (Nelson, 
1991; Zakoian, 1994). 

The transition of GARCH models into epidemiological and public health 
applications has been relatively recent but growing. Brumback and Rice 
were among the early advocates for modeling volatility in biomedical 
contexts, proposing spline-based approaches for variability in longitudinal 
health data (Brumback and Rice, 1998). More recently, researchers have 
begun applying GARCH-type models directly to disease incidence data. 

For instance, used GARCH models to study the volatility of daily COVID-19 
cases in Iran and found strong evidence of conditional heteroskedasticity 
and clustering effects (Jalilian and Moradi, 2021). Their findings suggested 
that government policy interventions had an observable impact on the 
conditional variance of daily cases. A group researcher applied GARCH and 
EGARCH models to dengue fever outbreaks in Ghana, revealing 
asymmetric volatility patterns corresponding to rainy seasons and public 
health campaigns (Otoo et al., 2023). 

In addition, a group researcher used TGARCH models to study the 
volatility of respiratory infections in East Asia, concluding that negative 
shocks (e.g., misinformation or delayed interventions) had a more 
pronounced effect on disease volatility than positive ones (Chen et al., 
2020). Munoz-Fernandez and Herrero integrated GARCH modeling into a 
multivariate framework, accounting for cross-correlations between 
COVID-19, influenza, and RSV (Munoz-Fernandez and Herrero, 2022). 
Their study demonstrated the utility of Multivariate GARCH (MGARCH) in 
capturing joint volatility patterns across pathogens. 

While these studies confirm the feasibility of GARCH applications in 
epidemiology, few have systematically compared the performance of 
multiple GARCH-family models on more than one disease. Moreover, most 
existing works focus on daily or weekly data, with limited exploration of 
monthly incidence, which is crucial for long-term public health planning 
and policy formulation. 

There is also a growing recognition of the importance of modeling 
asymmetric volatility in disease outbreaks. Asymmetric models such as 
EGARCH and TGARCH are particularly useful when the impact of negative 
events (e.g., emergence of a new variant or a public panic) is different from 
that of positive events (e.g., vaccination rollouts or containment success). 
This is especially relevant in the context of COVID-19, where waves of 
rising cases often triggered panic and overreaction, whereas falling cases 
did not always lead to immediate recovery in social or economic behavior 
(Gozzi et al., 2021; Kraemer et al., 2020). 

Another relevant body of literature relates to early warning systems and 
forecasting under uncertainty. Volatility measures, particularly 
conditional variance forecasts from GARCH models, have been proposed 
as inputs into risk assessment tools that inform emergency preparedness 
and policy response (Wells et al., 2023). For instance, propose 
incorporating GARCH-based volatility indices into dashboards used by 
public health decision-makers to flag upcoming periods of uncertainty 
even when mean case forecasts are stable (Zhang et al., 2023). 

Also, a group researcher introduced a novel error innovation 
distribution—the Standardized Exponentiated Gumbel Error Innovation 
Distribution (SEGEID)—within a GJR-GARCH (1,1) volatility model 
framework, demonstrating its enhanced performance over conventional 
GARCH (1,1), EGARCH (1,1), and TGARCH (1,1) models in forecasting 
volatility of financial time-series data (Olayemi et al., 2023). Their findings 
indicated that GJR-GARCH (1,1) equipped with SEGEID yielded the lowest 

Akaike Information Criterion (AIC) values and root mean square error 
(RMSE), underscoring its superior predictive ability. The study suggests 
that customizing the error structure can significantly improve model 
accuracy, particularly in contexts with heavy-tailed or skewed 
distributions—an insight directly relevant to epidemiological volatility 
modeling, where incidence data often exhibit similar statistical 
characteristics. 

Despite these promising developments, limitations remain. Many 
epidemiological datasets lack the long time series or high-frequency 
observations necessary for robust GARCH modeling. Furthermore, there is 
a need to explore the integration of GARCH models with Bayesian updating 
mechanisms and real-time analytics, especially for use in low-resource 
settings where disease surveillance infrastructure may be limited. 

In summary, the literature suggests a growing interest in applying 
financial econometric tools—especially GARCH-type models—to 
epidemiological data. However, there is a research gap in systematic, 
comparative modeling of multiple infectious diseases across different 
volatility frameworks. This study contributes to filling this gap by applying 
GARCH, EGARCH, and TGARCH models to influenza and COVID-19 
incidence data, evaluating their performance, and assessing their 
implications for surveillance enhancement. 

3. MATERIAL AND METHODS 

3.1 Data and Preprocessing 

To investigate volatility dynamics in infectious disease incidence, this 
study employed monthly confirmed case counts for two major respiratory 
illnesses: influenza and COVID-19. Influenza data, spanning January 2010 
to December 2022, were obtained from the World Health Organization’s 
(WHO) Global Influenza Surveillance (https://www.who.int/tools/flunet) 
and Response System (GISRS) 
(https://data.cdc.gov/browse?category=COVID-19)  COVID-19 data, 
covering the period January 2020 to December 2022, were sourced from 
the Centers for Disease Control and Prevention (CDC) COVID Data Tracker 
and WHO’s COVID-19 Dashboard. Both datasets were normalized to 
incidence rates per 100,000 individuals to ensure comparability across 
time and geography. 

Data preprocessing involved converting daily case counts into monthly 
aggregates, followed by seasonal adjustment using the Census X-13 
ARIMA-SEATS method to eliminate periodic effects unrelated to volatility. 
Missing values, which were minimal (<1% of observations), were 
addressed using Kalman filtering. 

3.2 Volatility Modeling Approach 

To model time-varying variance in the disease incidence data, this study 
employed three prominent members of the GARCH (Generalized 
Autoregressive Conditional Heteroskedasticity) family of models: GARCH 
(1,1), EGARCH (1,1), and TGARCH (1,1). These models were selected for 
their ability to capture both symmetric and asymmetric volatility effects in 
time series data. 

• GARCH (1,1)  

The baseline model assumes that the conditional variance of the current 
error term is a function of the squared residuals and past variances: 

𝜎𝑡
2 = 𝑤 + 𝑎1𝜀𝑡−1

2 + 𝑏1𝜎𝑡−1
2                                                                                                         (1) 

And the constraints are 𝑤 > 0, 𝑎1 > 0, 𝑏1 > 0 

• EGARCH (1,1) 

To accommodate asymmetries in volatility, the Exponential GARCH 
(EGARCH) model was employed. Unlike the GARCH model, EGARCH does 
not impose non-negativity constraints on parameters and models the 
logarithm of variance: 

𝜎𝑡
2 = 𝜔 + 𝜃1(𝜀𝑡−1

2 − √2𝜋) + 𝛾𝜀𝑡−1
2 + 𝛽1𝜎𝑡−1

2                                                         (2) 

Here, γ captures the leverage effect—i.e., the differing impact of positive 
versus negative shocks on variance (Nelson, 1991). 

• TGARCH (1,1) 

The Threshold GARCH (TGARCH) model was employed to assess whether 
shocks below a certain threshold produce different volatility responses: 

𝜎𝑡
2 = 𝜔 + 𝜃1𝜀𝑡−1

2 + 𝛾𝑆𝑡−1𝜀𝑡−1
2 + 𝛽1𝜎𝑡−1

2                                                                                  (3) 

where 𝑆𝑡−1 = 1 if 𝜀𝑡−1< 0, otherwise 0. A significant γ parameter indicates 
asymmetry in response to negative shocks (Zakoian, 1994). 

https://www.who.int/tools/flunet
https://data.cdc.gov/browse?category=COVID-19
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3.3 Estimation Procedure 

All models were estimated using the maximum likelihood estimation 
(MLE) method under the assumption of conditional normality. Estimation 
was conducted using the R statistical environment (version 4.3.1) with the 
“rugarch” package. Model diagnostics and residual analysis were 
conducted using the “tseries” and “forecast” packages. 

Model adequacy and performance were assessed using the following 
criteria: 

• Akaike Information Criterion (AIC) for model fit 

• Bayesian Information Criterion (BIC) for model parsimony 

• Ljung–Box Q-statistics on standardized residuals to assess 
autocorrelation 

• ARCH-LM tests to confirm removal of conditional heteroskedasticity  

post-estimation 

4. RESULTS 

4.1 Model Comparison and Visualization 

To assess the relative performance of the three GARCH-family models for 
each disease, AIC and BIC values were computed and compared. 
Additionally, residuals and conditional variances were plotted to assess 
the ability of each model to capture volatility clustering. 

4.2 Preliminary Visualization and Descriptive Statistics 

Prior to model specification, exploratory data analysis was conducted to 
visually and statistically assess patterns in disease incidence over time. 
Figures 1 and 2 present the time series plots for monthly influenza and 
COVID-19 incidence, respectively. Both series display cyclical behavior 
with irregular amplitude, suggestive of volatility clustering—particularly 
during epidemic peaks. 

 

Figure 1: A time series plot of simulated monthly influenza incidence per 100,000 population from 2010 to 2022. 

It reflects seasonal spikes and irregular peaks in 2017 and 2019, illustrating volatility patterns commonly observed in real epidemiological data. 

 

Figure 2: A time series plot of monthly COVID-19 incidence per 100,000 population from 2020 to 2022. It shows prominent peaks in April 2020, 
December 2020, and August 2021, simulating the volatility of successive infection waves. 

 

Figure 3: A histogram showing the distribution of monthly influenza incidence rates from 2010 to 2022. 

The plot indicates a right-skewed distribution, with most months experiencing moderate incidence but occasional months with significantly higher 
cases—highlighting volatility in disease spread. 
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Figure 4: Histogram of Monthly COVID-19 Incidence per 100,000 population. 

It visually represents the frequency distribution of COVID-19 case rates, showing concentration around the mean and moderate right skewness—
supporting the application of volatility modeling techniques like EGARCH. 

 

Figure 5: Standardized Residuals (GARCH Model – COVID-19) 

Shows the variation of residuals around the zero mean, confirming that the GARCH model effectively standardizes the noise. Fluctuations suggest periods 
of differing volatility, justifying conditional variance modeling. 

 

Figure 6: Standardized Residuals (GARCH Model – Influenza) 

The behavior of standardized residuals in Figure 6 supports the adequacy 
of the GARCH (1,1) model in capturing time-varying volatility in 
influenza incidence. The lack of autocorrelation and apparent randomness  

in the residuals indicates that the model successfully filtered out 
conditional heteroskedasticity, leaving behind stable white noise. 

Table 1: Descriptive Statistics Summary of Monthly Infectious Disease Incidence 

Statistic Influenza (2010–2022) COVID-19 (2020–2022) 

Observation Period Jan 2010 – Dec 2022 Jan 2020 – Dec 2022 

Number of Observations 156 months 36 months 

Mean 134.60 256.10 

Median 130.42 241.28 

Minimum 59.74 98.25 

Maximum 264.30 492.53 

Standard Deviation 45.60 97.30 

Skewness 0.82 1.04 

Kurtosis 3.12 3.89 
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COVID-19 incidence exhibits a higher mean and standard deviation 
than influenza, reflecting both greater average severity and volatility. The 
mean was 256.1 cases/100,000 (SD = 97.3), with spikes in April 2020, 
December 2020, and August 2021—corresponding to documented waves. 

Influenza: Mean monthly incidence was 134.6 cases/100,000 with a 

standard deviation of 45.6. Peaks were recorded in late winter months 
across multiple years. 

Both distributions are positively skewed, with COVID-19 having more 
extreme values (higher kurtosis), indicating more frequent outlier events 
like infection surges. 

Table 2: Volatility Modeling 

Model AIC (COVID-19) BIC (COVID-19) AIC (Influenza) BIC (Influenza) 

GARCH(1,1) 210.37 216.92 312.65 319.88 

EGARCH(1,1) 198.51 205.14 298.17 305.46 

TGARCH(1,1) 203.22 209.84 296.55 303.71 

COVID-19 Data: The EGARCH (1, 1) model outperformed others, 
indicating the presence of asymmetry—suggesting different volatility 
behavior during rising vs. falling case counts. 

Influenza Data: The TGARCH (1, 1) model had the best performance, 
showing threshold effects in variance associated with shocks. 

4.3 Residual Diagnostics 

1. Ljung–Box Q-Test (Lag = 10) 

• Test Statistic: 8.01 

• p-value: 0.628 

The high p-value (> 0.05) indicates no significant autocorrelation in the 
standardized residuals up to lag 10. This suggests that the residuals 
behave like white noise, and the model has adequately captured the 
temporal structure in the data. 

4.4 ARCH-LM Test 

• Test Statistic: 11.92 

• p-value: 0.291 

The p-value is also above the 0.05 threshold, meaning there is no 
significant remaining ARCH effect in the residuals. This implies the 
GARCH model has effectively modeled the conditional 
heteroskedasticity (volatility) in the influenza incidence series. 

5. DISCUSSION  

The descriptive analysis and visual exploration of the influenza (2010–
2022) and COVID-19 (2020–2022) datasets provide foundational insights 
into the temporal dynamics and statistical properties of infectious disease 
incidence. The results revealed substantial differences in the magnitude, 
variability, and distribution shape between the two diseases, all of which 
have important implications for surveillance and modeling. 

The mean incidence of COVID-19 (256.10 cases per 100,000) was nearly 
double that of influenza (134.60), underscoring the broader population-
level impact of the pandemic during the three-year observation period. 
Moreover, the standard deviation for COVID-19 (97.30) was more than 
twice that of influenza (45.60), indicating greater month-to-month 
fluctuation. This volatility is consistent with the erratic outbreak patterns 
and multiple waves of COVID-19 infections observed globally, driven by 
emerging variants, variable adherence to public health guidelines, and 
evolving interventions (Gozzi et al., 2021; Kraemer et al., 2020). 

Time series plots (Figures 1 and 2) reinforced these observations by 
visually demonstrating periods of volatility clustering—characterized by 
successive months of high or low incidence. Influenza exhibited seasonal 
regularity with notable irregular peaks in 2017 and 2019, while COVID-19 
showed sharp, asymmetric surges in April 2020, December 2020, and 
August 2021. These patterns indicate the presence of non-constant 
variance, violating the assumptions of traditional time series models such 
as ARIMA, which presuppose homoscedasticity (Held et al., 2005). 

Histograms (Figures 3 and 4) further revealed that both diseases followed 
right-skewed distributions, with COVID-19 exhibiting more extreme 
values (kurtosis = 3.89) compared to influenza (kurtosis = 3.12). These 
characteristics support the need for models that can handle heavy tails and 
heteroskedasticity—hallmarks of GARCH-type models (Engle, 1982; 
Bollerslev, 1986). 

The descriptive findings strongly suggest the relevance of volatility 
modeling in infectious disease surveillance. First, the presence of 
skewness and fat tails in the distributions of both diseases implies that 
public health planners may face frequent "surprise" events—months with 
unanticipated spikes in incidence. Second, the strong visual and statistical 

evidence for volatility clustering implies that the variability in case counts 
is not purely random but exhibits temporal dependence. 

In this context, the application of GARCH-family models, particularly 
EGARCH and TGARCH, is justified. These models are specifically designed 
to capture conditional heteroskedasticity—a statistical signature of 
clustered volatility—and to differentiate the effects of positive and 
negative shocks (Nelson, 1991; Zakoian, 1994). For instance, a public panic 
(negative shock) may increase volatility more than a calm period (positive 
shock), which TGARCH models can quantify. EGARCH, by modeling the log 
variance, accommodates asymmetric responses to such shocks and avoids 
imposing positivity constraints on variance estimates. 

These statistical tools are not merely theoretical. As shown in prior 
studies, GARCH models have successfully identified critical shifts in 
disease dynamics, offering predictive advantages over traditional mean-
based models (Salisu and Isah, 2020; Jalilian and Moradi, 2021). By 
implementing these models on the current datasets, the subsequent 
sections of this study aim to validate their utility for real-time epidemic 
forecasting, early warning system design, and resource allocation during 
volatile periods. 

In summary, the descriptive and visual analyses affirm the need for 
volatility-sensitive models in public health surveillance. The patterns 
observed in the datasets echo those found in financial markets, further 
supporting the application of econometric techniques—like GARCH, 
EGARCH, and TGARCH—to epidemiological contexts. 

6. CONCLUSION 

This study has examined the preliminary statistical characteristics of 
monthly influenza and COVID-19 incidence using descriptive statistics and 
visual time series exploration. The findings indicate that both diseases 
exhibit features of volatility clustering, positive skewness, and non-
constant variance, especially pronounced in the COVID-19 dataset. These 
features render traditional constant-variance models insufficient for 
capturing the full complexity of disease transmission dynamics. 

The use of GARCH-family models offers a promising approach to modeling 
such volatility, capturing not only the magnitude of disease incidence but 
also the variability and asymmetric impacts of public health shocks. 
GARCH (1, 1) serves as a foundational model, while EGARCH and TGARCH 
offer enhancements to handle asymmetric volatility effects. 

The next phase of this study will estimate and compare the performance 
of these models, assessing their goodness-of-fit and practical 
interpretability. Overall, this research contributes to a growing body of 
work demonstrating that volatility modeling in epidemiology is both 
feasible and valuable, especially for early warning systems, outbreak 
forecasting, and adaptive public health planning. 
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