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ABSTRACT

Water Pollution Model is a nonlinear system which present the random bias. The most common method is to use 
augmented state Cubature Kalman Filter, but the computational requirement of augmented state Kalman filter may 
become excessive. It is easily overflow and fail when running on digital computer. In this paper, two-stage Cubature 
Kalman filter is proposed to solve this problem. The estimate of two-stage Cubature Kalman filter can be expressed 
as the output of the advanced bias free filter and bias filter. Contrast augmented state Cubature Kalman filter, two-
stage Cubature Kalman filter is equivalent to the augmented state Cubature Kalman Filter in terms of computational 
accuracy, but computation is much smaller than augmented state Cubature Kalman Filter. The simulation results 
prove the validity of the two-stage Cubature Kalman filter in Water Pollution Model and prove the equivalence of 
the two algorithms. 
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1. INTRODUCTION 

Consider the problem of nonlinear system with randam bias, it is common 
to use augmented state Cubature Kalman Filter, which treat the bias as 
part of the state. When the state is estimated, as well as the bias. With the 
increase of system equation dimension in practical application, the 
amount of computation for augmented state Cubature Kalman Filter will 
dramatically increase. It is easily overflow and fail when running on digital 
computer. To avoid use of augmented state Cubature Kalman Filter, the 
researchers propose a two-stage filtering method. Friedland proposed a 
two-stage filter to decouple the filter into two parallel filters-bias free filter 
and bias filter, but this method is optimal for constant bias, it is suboptimal 
for random bias unless exist suitable algebraic constraint. A group 
researcher proposed an optimal two-stage Kalman estimator respect 
which is an extension of Friedland’s estimator and is optimal in general 
conditions [1-3]. Simplify the computation. Many researchers had also 
contributed in this area, Chien-Shu Hsieh presented a general two-stage 
Kalman filter which provides the optimal estimate of the system state and 
can be applied to general, time-varying and linear dynamic systems [1]. 
The new filter can reduce the computational burdens. 

It is known that in practical applications require nonlinear filter 
techniques. Chien-Shu Hsieh extended the linear general two-stage filter 
to nonlinear systems and proposed a general two-stage extended Kalman 
filter and it is mathematically equivalent to the extend Kalman filter [1]. 
Other researchers presented a two-stage unscented Kalman filter which is 
designed by using the forgetting factor to compensate the effects of 
incomplete information [4]. In other studies, most of researchers 
proposed a novel two-stage extended Kalman filter algorithm, the 
proposed approach is respectively applied to estimating bias faults and 
loss of effectiveness for reaction flywheels in satellite attitude control 
systems [5]. Some researchers also extended the two-stage method to 
Cubature Kalman filter and proposed two-stage Cubature Kalman filter, 
which prevents augmented state Cubature Kalman Filter which brings 
dimension disaster and solves high-dimensional nonlinear filter problem 
with minimal computational effort [6]. 

In the numerical simulation of solute transport in groundwater, there are 
unavoidable bias: the error of the model itself, the error in the field 
measurement, and the error in the process of the solution [7]. In order to 
get closer to the real parameters, identification results and water quality 
prediction results, it is necessary to minimize the influence of these bias 
[8]. 

The Kalman filter algorithm is essentially a minimum variance estimation 
in the state space. It is applied to the identification of water quality 
parameters, and the main task is to find the state equations and 
observation equations [9-11]. The state equation describes the variation 
of the estimated value (the parameter to be considered) between the 
current and the next; The observation equation describes the relation 
between the estimated value and the actual observed value. Through the 
"prediction correction", the optimal values of parameters are obtained, 
and the purpose of parameter identification is achieved [12]. 

2. DETERMINATION OF WATER POLLUTION MODEL 

2.1 Determination of state equation  

It is assumed that hydrogeological conditions in the study area remain 
stable, The horizontal and vertical dispersion coefficients, the seepage 
velocity and the nitrification / denitrification coefficients remain 
unchanged [13]. The model parameter of solute transport is regarded as 
the state vector, and the observed solute concentration is regarded as the 
observation vector of the system. Then the corresponding state equation 
is:

𝑥𝑘+1 = 𝑓(𝑥𝑘) + 𝐷𝑘𝑏𝑘 + 𝜔𝑘
𝑥       (1a) 

where𝑥𝑘+1 = (𝐷𝑥, 𝐷𝑦, 𝑢𝑥, 𝑢𝑦, 𝑞𝑠, 𝑅, 1) is an unknown parameter vector 

needed to be identified? the nonlinear function 𝑓(∙) is state transition 
function. The noise sequence 𝜔𝑘

𝑥 is zero mean uncorrelated Gaussian 
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random sequences [14]. The error of the model itself, the error in the field 
measurement, and the error in the process of the solution are used as the 
unavoidable bias in the model, the bias equation is: 

𝑏𝑘+1 = 𝑏𝑘 + 𝜔𝑘
𝑏   (1b) 

where the noise sequence 𝜔𝑘
𝑏 is zero mean uncorrelated Gaussian random

sequences. 

2.2 Determination of observation equation  

Consider the following solute transport equation: 

𝜕𝐶

𝜕𝑡
= 𝐷𝑥

𝜕2𝐶

𝜕𝑥2
+ 𝐷𝑦

𝜕2𝐶

𝜕𝑦2
− 𝑢𝑥

𝜕𝐶

𝜕𝑥
− 𝑢𝑦

𝜕𝐶

𝜕𝑦
− 𝑞𝑠𝐶 + 𝑅𝐶 

Where:𝐷𝑥 , 𝐷𝑦 are dispersion coefficients along the X and Y axis directions, 

respectively; 𝑢𝑥, 𝑢𝑦 are the seepage velocity along the X and Y axis 

directions, respectively; 𝑞𝑠represents source and sink; 𝑅represents 
coefficient of decay reaction; 𝐶represents indicating the concentration of 
contaminants. 

The equation of solute transport in groundwater system is nonlinear, 
therefore, the Cubature Kalman filter is used to solve the problem. The 
observation equation is: 

𝑧𝑘 = ℎ(𝑥𝑘) + 𝐹𝑘𝑏𝑘 + 𝜐𝑘   (1c) 

where the nonlinear function ℎ(∙) is observation transition function. The 
noise sequence 𝜐𝑘 is zero mean uncorrelated Gaussian random sequences. 
The noise sequence 𝜔𝑘

𝑥, 𝜔𝑘
𝑏 and 𝜐𝑘 are zero mean uncorrelated Gaussian 

random sequences with 

𝐸 [[

𝜔𝑘
𝑥

𝜔𝑘
𝑏

𝜐𝑘

] [

𝜔𝑗
𝑥

𝜔𝑗
𝑏

𝜐𝑗

]

𝑇

] = [

𝑄𝑘
𝑥 0 0

0 𝑄𝑘
𝑏 0

0 0 𝑅𝑘

] 𝛿𝑘𝑗    (2) 

Where 𝑄𝑘
𝑥 > 0, 𝑄𝑘

𝑏 > 0, 𝑅𝑘 > 0 and δ𝑘𝑗  is the Kronecker delta. The initial 

states 𝑥0and 𝑏0 are assumed to be uncorrelated with the white noise 
processes 𝜔𝑘

𝑥, 𝜔𝑘
𝑏and υ𝑘 . We assume that the initial conditions 𝑥0 and 𝑏0

are Gaussian random variables with 

𝐸[𝑥0] = 𝑥̅0, 𝐸[(𝑥0 − 𝑥̅0)(𝑥0 − 𝑥̅0)𝑇] = 𝑃0
𝑥 > 0 

𝐸[𝑏0] = 𝑏̅0, 𝐸[(𝑏0 − 𝑏̅0)(𝑏0 − 𝑏̅0)𝑇] = 𝑃0
𝑏 > 0 

𝐸[(𝑥0 − 𝑥̅0)(𝑏0 − 𝑏̅0)𝑇] = 𝑃0
𝑥𝑏 > 0 

3. AUGMENTED STATE CUBATURE KALMAN FILTER 

Define: 

𝑋𝑘+1 = [
𝑥𝑘+1

𝑏𝑘+1
] , 𝑓(𝑋𝑘) = [

𝑓(𝑥𝑘) + 𝐷𝑘𝑏𝑘

𝑏𝑘
] , 𝜔𝑘 = [

𝜔𝑘
𝑥

𝜔𝑘
𝑏] 

ℎ(𝑋𝑘) = ℎ(𝑥𝑘) + 𝐹𝑘𝑏𝑘 
The model given by Eqs. (1a)-(1c) may be rewritten as: 

𝑋𝑘+1 = 𝑓(𝑋𝑘) + ω𝑥   (3a) 
𝑍𝑘 = ℎ(𝑋𝑘) + 𝜐𝑘         (3b) 
Where 

𝑊 = 𝐸(𝜔𝑘𝜔𝑗) = [
𝑄𝑘

𝑥 0

0 𝑄𝑘
𝑏] 𝛿𝑘𝑗 

According to the Cubature Kalman filter, treating 𝑥𝑘 and 𝑏𝑘 as the 
augmented system state, the augmented state Cubature Kalman filter is 
described by: 

A. Time Update 

1)Assume at time k that the posterior density function 𝑝(𝑥𝑘−1|𝑘−1) =

ℵ(𝑋̂𝑘−1|𝑘−1, 𝑃𝑘−1|𝑘−1) is known, factorize 

𝑃𝑘−1|𝑘−1 = 𝑆𝑘−1|𝑘−1𝑆𝑘−1|𝑘−1
𝑇    (4) 

2)Evaluate the cubature points(i=1,2, ···, m)
𝑋𝑖,𝑘−1|𝑘−1 = 𝑆𝑘−1|𝑘−1𝜉𝑖 + 𝑋̂𝑘−1|𝑘−1   (5) 

3)Evaluate the propagated cubature points(i=1,2, ···, m)
𝑋𝑖,𝑘−1|𝑘−1

∗ = 𝑓(𝑋𝑖,𝑘−1|𝑘−1, 𝑢𝑘−1)    (6) 

4)Estimate the predicted state

𝑋̂𝑘|𝑘−1 =
1

𝑚
∑ 𝑋𝑖,𝑘−1|𝑘−1

∗𝑚
𝑖=1 (7) 

5)Estimate the predicted error covariance

𝑃𝑘|𝑘−1 =
1

𝑚
∑ 𝑋𝑖,𝑘−1|𝑘−1

∗𝑚
𝑖=1 𝑋𝑖,𝑘−1|𝑘−1

∗ 𝑇 − 𝑋̂𝑘|𝑘−1𝑋̂𝑘|𝑘−1
𝑇

+ 𝑄𝑘−1 (8) 

B. Measurement Update 
Factorize 
𝑃𝑘|𝑘−1 = 𝑆𝑘|𝑘−1𝑆𝑘|𝑘−1

𝑇   (9) 

1)Evaluate the cubature points(i=1,2, ···, m)
𝑋𝑖,𝑘|𝑘−1 = 𝑆𝑘|𝑘−1𝜉𝑖 + 𝑋̂𝑘|𝑘−1   (10) 

2)Evaluate the propagated cubature points(i=1,2, ···, m)
𝑍𝑖,𝑘|𝑘−1 = ℎ(𝑋𝑖,𝑘|𝑘−1)    (11) 

3)Estimate the predicted state

𝑍̂𝑘|𝑘−1 =
1

𝑚
∑ 𝑍𝑖,𝑘|𝑘−1

𝑚
𝑖=1 (12) 

4)Estimate the innovation covariance matrix

𝑃𝑧𝑧,𝑘|𝑘−1 =
1

𝑚
∑ 𝑍𝑖,𝑘|𝑘−1

𝑚
𝑖=1 𝑍𝑖,𝑘|𝑘−1

𝑇 − 𝑍̂𝑘|𝑘−1𝑍̂𝑘|𝑘−1
𝑇

+ 𝑅𝑘 (13) 

5)Estimate the cross-covariance matrix 

𝑃𝑥𝑧,𝑘|𝑘−1 =
1

𝑚
∑ 𝑋𝑖,𝑘|𝑘−1

𝑚
𝑖=1 𝑍𝑖,𝑘|𝑘−1

𝑇 − 𝑋̂𝑘|𝑘−1𝑍̂𝑘|𝑘−1
𝑇

 (14) 

6)Estimate the Kalman gain

𝐾𝑘 = 𝑃𝑥𝑧,𝑘|𝑘−1𝑃𝑧𝑧,𝑘|𝑘−1
−1   (15) 

7)Estimate the updated state 
𝑋̂𝑘|𝑘 = 𝑋̂𝑘|𝑘−1 + 𝐾𝑘(𝑍𝑘 − 𝑍̂𝑘|𝑘−1)      (16) 

8)Estimate the corresponding error covariance
𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝐾𝑘𝑃𝑧𝑧,𝑘|𝑘−1𝐾𝑘

𝑇   (17) 

The detailed steps of the augmented state Cubature Kalman filter 
Algorithm are summarized in Table 1. 

Table 1: The augmented state Cubature Kalman filter Algorithm 

Time update 
1) Evaluate 𝑆𝑘−1|𝑘−1 by factorize 𝑃𝑘−1|𝑘−1(4). 

2) Calculate the cubature points 𝑋𝑖,𝑘−1|𝑘−1 (5)and the propagated 

cubature points 𝑋𝑖,𝑘−1|𝑘−1
∗  (6). 

3) Estimate the predicted state 𝑋̂𝑘|𝑘−1 (7). 

4) Estimate the predicted error covariance 𝑃𝑘|𝑘−1 (8). 

Measurement update 
1) Factorize 𝑃𝑘|𝑘−1 gets 𝑆𝑘|𝑘−1(9). 

2)Calculate the cubature points 𝑋𝑖,𝑘|𝑘−1(10) and the propagated 

cubature points 𝑍𝑖,𝑘|𝑘−1by measurement equation (11). 

3) Estimate the predicted measurement 𝑍̂𝑘|𝑘−1(12). 

4) Estimate the cross-covariance matrix 𝑃𝑥𝑧,𝑘|𝑘−1(14). 

5) Estimate the Kalman gain 𝐾𝑘 (15). 
6) Estimate the updated state 𝑋̂𝑘|𝑘(16) and the corresponding error

covariance 𝑃𝑘|𝑘(17). 

The above filter dimension is n+p. when p is comparable to n, contrast 
initial system state dimension, the new state vector 𝑋𝑘 dimension becomes 
substantially larger, the computational requirement of the augmented 
state Kalman filter may become excessive. It is easily overflow and fail 
when running on digital computer. To solve this problem, a large number 
of researchers proposed two-stage filter algorithm, Through the summary 
of these literatures, in literature, we proposed two-stage Cubature Kalman 
filter(TSCKF), This method was proved that under an algebraic constraint 
the two-stage Kalman filter is optimal, but the algebraic constraint is 
restrictive in practice, so two-stage Cubature Kalman filter is usually 
suboptimal. It is proposed a two-stage Cubature filterin this paper, is 
equivalent to the Augmented state Cubature Kalman Filter. 

4. TWO-STAGE CUBATURE KALMAN FILTER 

Theorem 1.Two-stage Cubature Kalman Filter 
𝑋̅𝑘|𝑘

1 is the output of the advancd bias-free filter. 

𝑋̅𝑘|𝑘−1
1 =

1

𝑚
∑ 𝑓1(𝑆𝑘−1|𝑘−1𝜉𝑖 + 𝑇(Ψ, 𝑋̅𝑘−1|𝑘−1), 𝑢𝑘−1)

𝑚

𝑖=1

− Φ(𝑋̅𝑘|𝑘−1
2 ) 

𝑋̅𝑘|𝑘
1 = 𝑋̅𝑘|𝑘−1

1 + Φ(𝑋̅𝑘|𝑘−1
2 ) + 𝑉𝑘(𝑋̅𝑘|𝑘

2 − 𝑋̅𝑘|𝑘−1
2 ) − Ψ(𝑋̅𝑘|𝑘

2 )

+ 𝐾𝑘
1 (𝑍𝑘 −

1

𝑚
∑ ℎ(𝑆𝑘|𝑘−1𝜉𝑖 + 𝑇(Φ, 𝑋̅𝑘|𝑘−1), 𝑢𝑘)

𝑚

𝑖=1

) 

𝑃̅𝑘|𝑘−1
1 = 𝑀𝑘−1

11 + 𝑄𝑘−1
11 − 𝑈𝑘(𝑀𝑘−1

12 + 𝑄𝑘−1
12 )𝑇

𝑃̅𝑘|𝑘
1 = 𝑃̅𝑘|𝑘−1

1 + 𝑈𝑘𝑃̅𝑘|𝑘−1
2 𝑈𝑘

𝑇 − 𝑉𝑘𝑃̅𝑘|𝑘−1
2 𝑉𝑘

𝑇 − 𝐾𝑘
1𝑃𝑧𝑧,𝑘|𝑘−1(𝐾̅𝑘

1)𝑇

− 𝐾𝑘
1𝑃𝑧𝑧,𝑘|𝑘−1(𝐾̅𝑘

2)𝑇𝑉𝑘
𝑇 − (𝐾𝑘

1𝑃𝑧𝑧,𝑘|𝑘−1(𝐾̅𝑘
2)𝑇𝑉𝑘

𝑇)𝑇

𝐾𝑘
1 = 𝑁𝑘

1 − 𝑉𝑘𝑁𝑘
2

𝑋̅𝑘|𝑘
2 is the output of the bias filter.

𝑋̅𝑘|𝑘−1
2 =

1

𝑚
∑ 𝑓2(𝑆𝑘−1|𝑘−1𝜉𝑖 + 𝑇(Ψ, 𝑋̅𝑘−1|𝑘−1), 𝑢𝑘−1)

𝑚

𝑖=1

 

𝑋̅𝑘|𝑘
2 = 𝑋̅𝑘|𝑘−1

2 + 𝐾𝑘
2 (𝑍𝑘 −

1

𝑚
∑ ℎ(𝑆𝑘|𝑘−1𝜉𝑖 + 𝑇(Φ, 𝑋̅𝑘|𝑘−1), 𝑢𝑘)

𝑚

𝑖=1

) 

10
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𝑃̅𝑘|𝑘−1
2 = 𝑀𝑘−1

22 + 𝑄𝑘−1
22

𝑃̅𝑘|𝑘
2 = 𝑃̅𝑘|𝑘−1

2 − 𝐾𝑘
2𝑃𝑧𝑧,𝑘|𝑘−1(𝐾𝑘

2)𝑇

𝐾𝑘
2 = 𝑁𝑘

2

The blending matrices 𝑈𝑘 and 𝑉𝑘 are given as follows: 

𝑈𝑘 = (𝑀𝑘−1
12 + 𝑄𝑘−1

12 )(𝑀𝑘−1
22 + 𝑄𝑘−1

22 )−1

𝑉𝑘 = 𝑈𝑘 − 𝐾𝑘
1𝑃𝑧𝑧,𝑘|𝑘−1(𝐾̅𝑘

2)𝑇(𝑃̅𝑘|𝑘−1
2 )−1 

Proof. The key idea for advanced Two-stage Cubature Kalman Filter is 
based on state transformations that make the covariance matrices block 
diagonal. 

In the linear systems, two-stage Kalman Filter can be obtained by the 
following Ttransformation: 

𝑇(𝐺) = (
𝐼𝑛−𝑝 𝐺

0 𝐼𝑃
)(18) 

Thus, using the two-stage transformations, Cubature Kalman Filter can 
become the following form: 

𝑋̂𝑘|𝑘−1 = 𝑇(𝑈𝑘)𝑋̅𝑘|𝑘−1(19) 

𝑋̂𝑘|𝑘 = 𝑇(𝑉𝑘)𝑋̅𝑘|𝑘   (20) 

𝑃𝑘|𝑘−1 = 𝑇(𝑈𝑘)𝑃̅𝑘|𝑘−1𝑇𝑇(𝑈𝑘)(21) 

𝑃𝑘|𝑘 = 𝑇(𝑉𝑘)𝑃̅𝑘|𝑘𝑇𝑇(𝑉𝑘)   (22) 

𝐾𝑘 = 𝑇(𝑉𝑘)𝐾𝑘   (23) 

where 𝑃̅ = 𝑑𝑖𝑎𝑔{𝑃̅1, 𝑃̅2}.  

To extend the two-stage transformations to nonlinear system, the T 
transformation of (18) is proposed as following: 

𝑇(𝐹, 𝑋) = [
𝑋1 + 𝐹(𝑋2)

𝑋2
]    (24) 

where 𝑋 = {(𝑋1)𝑇, (𝑋2)𝑇}𝑇 in which 𝑋1 ∈ 𝑅𝑛−𝑝 and 𝑋2 ∈ 𝑅𝑝, and 𝐹(𝑋2) is 
a nonlinear function of the substate 𝑋2. 

From (24), it have the following properties: 
𝜕𝑇(Φ,𝑋̅𝑘|𝑘−1)

𝜕𝑋̅𝑘|𝑘−1
= [

𝐼𝑛−𝑝 𝑈𝑘

0 𝐼𝑝
] ≡ 𝑇(𝑈𝑘)(25) 

𝜕𝑇(Ψ,𝑋̅𝑘|𝑘)

𝜕𝑋̅𝑘|𝑘
= [

𝐼𝑛−𝑝 𝑉𝑘

0 𝐼𝑝
] ≡ 𝑇(𝑉𝑘)    (26)  

Where 

𝑈𝑘 =
𝜕Φ(𝑋̅𝑘|𝑘−1

2 )

𝜕𝑋̅𝑘|𝑘−1
2 , 𝑉𝑘 =

𝜕Ψ(𝑋̅𝑘|𝑘
2 )

𝜕𝑋̅𝑘|𝑘
2   (27) 

Using the T transformation with (24), the two-stage transformation(19)-
(23) then become 

𝑋̂𝑘|𝑘−1 = 𝑇(Φ, 𝑋̅𝑘|𝑘−1)(28) 

𝑋̂𝑘|𝑘 = 𝑇(Ψ, 𝑋̅𝑘|𝑘)          (29) 

𝑃𝑘|𝑘−1 =
𝜕𝑇(Φ,𝑋̅𝑘|𝑘−1)

𝜕𝑋̅𝑘|𝑘−1
𝑃̅𝑘|𝑘−1 (

𝜕𝑇(Φ,𝑋̅𝑘|𝑘−1)

𝜕𝑋̅𝑘|𝑘−1
)

𝑇

  (30) 

𝑃𝑘|𝑘 =
𝜕𝑇(Ψ,𝑋̅𝑘|𝑘)

𝜕𝑋̅𝑘|𝑘
𝑃̅𝑘|𝑘−1 (

𝜕𝑇(Ψ,𝑋̅𝑘|𝑘)

𝜕𝑋̅𝑘|𝑘
)

𝑇

  (31) 

𝐾𝑘 =
𝜕𝑇(Ψ,𝑋̅𝑘|𝑘)

𝜕𝑋̅𝑘|𝑘
𝐾𝑘                       (32) 

where Φ and Ψ are two determined nonlinear functions.  

Next, based on the above (28)-(32), the two-stage Cubature Kalman filter 
can be obtained via the following method. 

At the first step, substituting (7),(16) into the left-hand side of (28),(29) 
and using(24), We obtain 

[
𝑋̅𝑘|𝑘−1

1 + Φ(𝑋̅𝑘|𝑘−1
2 )

𝑋̅𝑘|𝑘−1
2 ] =

1

𝑚
∑ 𝑓(𝑆𝑘−1|𝑘−1𝜉𝑖 + 𝑇(Ψ, 𝑋̅𝑘−1|𝑘−1), 𝑢𝑘−1)𝑚

𝑖=1 (33) 

[
𝑋̅𝑘|𝑘

1 + Ψ(𝑋̅𝑘|𝑘
2 )

𝑋̅𝑘|𝑘
2 ] = [

𝑋̅𝑘|𝑘−1
1 + Φ(𝑋̅𝑘|𝑘−1

2 )

𝑋̅𝑘|𝑘−1
2 ] + 

𝐾𝑘 (𝑍𝑘 −
1

𝑚
∑ ℎ(𝑆𝑘|𝑘−1𝜉𝑖 + 𝑇(Φ, 𝑋̅𝑘|𝑘−1), 𝑢𝑘)𝑚

𝑖=1 )(34) 

Expanding(33),(34)and using (26),(32)gets 

𝑋̅𝑘|𝑘−1
1 =

1

𝑚
∑ 𝑓1(𝑆𝑘−1|𝑘−1𝜉𝑖 + 𝑇(Ψ, 𝑋̅𝑘−1|𝑘−1), 𝑢𝑘−1)𝑚

𝑖=1 − Φ(𝑋̅𝑘|𝑘−1
2 )(35) 

𝑋̅𝑘|𝑘
1 = 𝑋̅𝑘|𝑘−1

1 + Φ(𝑋̅𝑘|𝑘−1
2 ) + 𝑉𝑘(𝑋̅𝑘|𝑘

2 − 𝑋̅𝑘|𝑘−1
2 ) − Ψ(𝑋̅𝑘|𝑘

2 ) + 

𝐾𝑘
1 (𝑍𝑘 −

1

𝑚
∑ ℎ(𝑆𝑘|𝑘−1𝜉𝑖 + 𝑇(Φ, 𝑋̅𝑘|𝑘−1), 𝑢𝑘)𝑚

𝑖=1 )(36) 

𝑋̅𝑘|𝑘−1
2 =

1

𝑚
∑ 𝑓2(𝑆𝑘−1|𝑘−1𝜉𝑖 + 𝑇(Ψ, 𝑋̅𝑘−1|𝑘−1), 𝑢𝑘−1)𝑚

𝑖=1  (37) 

𝑋̅𝑘|𝑘
2 = 𝑋̅𝑘|𝑘−1

2 + 𝐾𝑘
2 (𝑍𝑘 −

1

𝑚
∑ ℎ(𝑆𝑘|𝑘−1𝜉𝑖 + 𝑇(Φ, 𝑋̅𝑘|𝑘−1), 𝑢𝑘)𝑚

𝑖=1 )(38) 

where 
𝑓(∙) = [(𝑓1(∙))𝑇 (𝑓2(∙))𝑇]𝑇  

𝐾𝑘 = [(𝐾𝑘
1)𝑇 (𝐾𝑘

2)𝑇]𝑇

According to (8), order 

𝑀𝑘−1 =
1

𝑚
∑ 𝑋𝑖,𝑘−1|𝑘−1

∗𝑚
𝑖=1 ∑ 𝑋𝑖,𝑘−1|𝑘−1

∗ 𝑇𝑚
𝑖=1 − 𝑋̂𝑘|𝑘−1𝑋̂𝑘|𝑘−1

𝑇
  (39) 

there is 

𝑀𝑘−1 = [
𝑀𝑘−1

11 𝑀𝑘−1
12

(𝑀𝑘−1
12 )𝑇 𝑀𝑘−1

22 ]  (40) 

obtain 

𝑃𝑘|𝑘−1 = 𝑀𝑘−1 + 𝑄𝑘−1 = [
𝑀𝑘−1

11 + 𝑄𝑘−1
11 𝑀𝑘−1

12 + 𝑄𝑘−1
12

(𝑀𝑘−1
12 + 𝑄𝑘−1

12 )𝑇 𝑀𝑘−1
22 + 𝑄𝑘−1

22 ] (41) 

using (25)(30) yields 

𝑃̅𝑘|𝑘−1
1 = 𝑀𝑘−1

11 + 𝑄𝑘−1
11 − 𝑈𝑘(𝑀𝑘−1

12 + 𝑄𝑘−1
12 )𝑇  (42) 

𝑃̅𝑘|𝑘−1
2 = 𝑀𝑘−1

22 + 𝑄𝑘−1
22 (43) 

𝑈𝑘 = (𝑀𝑘−1
12 + 𝑄𝑘−1

12 )(𝑀𝑘−1
22 + 𝑄𝑘−1

22 )−1(44) 
Transformation formula(31)and expanding by(30)(32) 

𝑃̅𝑘|𝑘
1 = 𝑃̅𝑘|𝑘−1

1 + 𝑈𝑘𝑃̅𝑘|𝑘−1
2 𝑈𝑘

𝑇 − 𝑉𝑘𝑃̅𝑘|𝑘−1
2 𝑉𝑘

𝑇 − 𝐾𝑘
1𝑃𝑧𝑧,𝑘|𝑘−1(𝐾𝑘

1)𝑇 − 

𝐾𝑘
1𝑃𝑧𝑧,𝑘|𝑘−1(𝐾𝑘

2)𝑇𝑉𝑘
𝑇 − (𝐾𝑘

1𝑃𝑧𝑧,𝑘|𝑘−1(𝐾𝑘
2)𝑇𝑉𝑘

𝑇)
𝑇

(45) 

𝑃̅𝑘|𝑘
2 = 𝑃̅𝑘|𝑘−1

2 − 𝐾𝑘
2𝑃𝑧𝑧,𝑘|𝑘−1(𝐾̅𝑘

2)𝑇(46) 

𝑉𝑘 = 𝑈𝑘 − 𝐾𝑘
1𝑃𝑧𝑧,𝑘|𝑘−1(𝐾̅𝑘

2)𝑇(𝑃̅𝑘|𝑘−1
2 )−1(47) 

According to (13)-(15), order 
𝑁𝑘 = 𝑃𝑥𝑧,𝑘|𝑘−1𝑃𝑧𝑧,𝑘|𝑘−1

−1 (48) 

we have 

𝐾𝑘 = 𝑁𝑘 = [
𝑁𝑘

1

𝑁𝑘
2](49) 

using(29) 
𝐾𝑘

1 = 𝑁𝑘
1 − 𝑉𝑘𝑁𝑘

2(50) 
𝐾𝑘

2 = 𝑁𝑘
2(51) 

are deduced. 

The proof is finished. It remains to solve the problem of obtaining Φ and 
Ψ. This can be done by using (32) and the backward difference equation 
as follows: 

Φ(𝑋̅𝑘|𝑘−1
2 ) = Φ(𝑋̅𝑘−1|𝑘−2

2 ) + 𝑈𝑘(𝑋̅𝑘|𝑘−1
2 − 𝑋̅𝑘−1|𝑘−2

2 ) 

Ψ(𝑋̅𝑘|𝑘
2 ) = Ψ(𝑋̅𝑘−1|𝑘−1

2 ) + 𝑉𝑘(𝑋̅𝑘|𝑘
2 − 𝑋̅𝑘−1|𝑘−1

2 ) 

The Two-stage Cubature Kalman Filter Algorithm are summarized in 
Table 2. 

Table2: The Two-stage Cubature Kalman Filter Algorithm 

Time update 
1) Evaluate 𝑆𝑘−1|𝑘−1 by factorize 𝑃𝑘−1|𝑘−1(4). 

2) Calculate the cubature points 𝑋𝑖,𝑘−1|𝑘−1 (5)and the propagated 

cubature points𝑋𝑖,𝑘−1|𝑘−1
∗ (6). 

3) Estimate the predicted state  𝑋̅𝑘|𝑘−1
1  (35) and 𝑋̅𝑘|𝑘−1

2  (37). 

4) Estimate the predicted error covariance 𝑃𝑘|𝑘−1
1 (42) , 𝑃𝑘|𝑘−1

2  (43) use 

𝑀𝑘−1(40) and 𝑈𝑘 in (45). 
Measurement update 
1) Factorize  𝑃𝑘|𝑘−1 gets 𝑆𝑘|𝑘−1.

2)Calculate the cubature points 𝑋𝑖,𝑘|𝑘−1(10) and the propagated 

cubature points 𝑍𝑖,𝑘|𝑘−1by measurement equation (11). 

3) Estimate the predicted measurement 𝑍̂𝑘|𝑘−1(12). 

4) Estimate the innovation covariance matrix 𝑃𝑧𝑧,𝑘|𝑘−1(13) and the

cross-covariance matrix𝑃𝑥𝑧,𝑘|𝑘−1(14). 

5) Estimate the Kalman gain 𝐾𝑘
1(50) and 𝐾𝑘

2(51) with 𝑁𝑘(48). 
6) Estimate the updated state 𝑋̅𝑘|𝑘

1 (36) and 𝑋̅𝑘|𝑘
2 (38). 

7)Estimate the corresponding error covariance 𝑃𝑘|𝑘
1 (45), 𝑃𝑘|𝑘

2 (46) and 

𝑉𝑘 in (47). 

5. SIMULATION EXAMPLES 

The true value and estimate value of the dispersion coefficients along the 
X and Y axis directions, the seepage velocity along the X and Y axis 
directions, and the source and sinkt are given in Figure 1 to Figure 10, as 
well as estimation error. It can be seen from Figure 2,4,6,8,10 that the 
estimated error value is within a small range which is too small to be 
neglected for practical applications. In fact, this error is due to the 
numerical computer error. Therefore, it is concluded that the estimation 
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accuracy of Two-stage Cubature Kalman Filter and state value is the same, 
the estimation results can be accepted. 

Figure 1: X-axis dispersion coefficients 

Figure 2: X-axisdispersion coefficients error 

Figure 3: Y-axis dispersion coefficients  

Figure 4: Y-axis dispersion coefficientserror 

Figure 5: X-axis seepage velocity  

Figure 6: X-axis seepage velocityerror 

Figuer 7: Y-axis seepage velocity

Figure 8: Y-axis seepage velocityerror 
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Figure 9: Source and sinkt  

Figure 10: Source and sinkt error 

Figure 11 and Figure 12 show the bias value and the bias error value. The 
state values are derived from the augmented state computation and the 
estimate values are derived from Two-stage Cubature Kalman Filter. The 
same as the above estimate error figures, the bias estimate error is within 
a small range and it can be obtained that the estimate value of the bias is 
similar as the bias state value.  

Figure 11: Bias value  

Figure 12: Bias error 

6. CONCLUSION 

In this paper, two-stage Cubature Kalman filter is proposed in water 
pollution model which to solve the nonlinear system with random bias. 
Contrast previous augmented stateCubature Kalman filter, two-state 
Cubature Kalman filter is equivalent to the augmented state Cubature 
Kalman Filter and is optimal. The simulation results prove the validity of 
the two-stateCubature Kalman filter algorithm and prove the equivalence 
of the two algorithms. 
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