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Water Pollution Model is a nonlinear system which present the random bias. The most common method is to use

augmented state Cubature Kalman Filter, but the computational requirement of augmented state Kalman filter may
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become excessive. It is easily overflow and fail when running on digital computer. In this paper, two-stage Cubature
Kalman filter is proposed to solve this problem. The estimate of two-stage Cubature Kalman filter can be expressed
as the output of the advanced bias free filter and bias filter. Contrast augmented state Cubature Kalman filter, two-

stage Cubature Kalman filter is equivalent to the augmented state Cubature Kalman Filter in terms of computational
accuracy, but computation is much smaller than augmented state Cubature Kalman Filter. The simulation results
prove the validity of the two-stage Cubature Kalman filter in Water Pollution Model and prove the equivalence of

the two algorithms.
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1. INTRODUCTION

Consider the problem of nonlinear system with randam bias, it is common
to use augmented state Cubature Kalman Filter, which treat the bias as
part of the state. When the state is estimated, as well as the bias. With the
increase of system equation dimension in practical application, the
amount of computation for augmented state Cubature Kalman Filter will
dramatically increase. It is easily overflow and fail when running on digital
computer. To avoid use of augmented state Cubature Kalman Filter, the
researchers propose a two-stage filtering method. Friedland proposed a
two-stage filter to decouple the filter into two parallel filters-bias free filter
and bias filter, but this method is optimal for constant bias, it is suboptimal
for random bias unless exist suitable algebraic constraint. A group
researcher proposed an optimal two-stage Kalman estimator respect
which is an extension of Friedland’s estimator and is optimal in general
conditions [1-3]. Simplify the computation. Many researchers had also
contributed in this area, Chien-Shu Hsieh presented a general two-stage
Kalman filter which provides the optimal estimate of the system state and
can be applied to general, time-varying and linear dynamic systems [1].
The new filter can reduce the computational burdens.

It is known that in practical applications require nonlinear filter
techniques. Chien-Shu Hsieh extended the linear general two-stage filter
to nonlinear systems and proposed a general two-stage extended Kalman
filter and it is mathematically equivalent to the extend Kalman filter [1].
Other researchers presented a two-stage unscented Kalman filter which is
designed by using the forgetting factor to compensate the effects of
incomplete information [4]. In other studies, most of researchers
proposed a novel two-stage extended Kalman filter algorithm, the
proposed approach is respectively applied to estimating bias faults and
loss of effectiveness for reaction flywheels in satellite attitude control
systems [5]. Some researchers also extended the two-stage method to
Cubature Kalman filter and proposed two-stage Cubature Kalman filter,
which prevents augmented state Cubature Kalman Filter which brings
dimension disaster and solves high-dimensional nonlinear filter problem
with minimal computational effort [6].

In the numerical simulation of solute transport in groundwater, there are
unavoidable bias: the error of the model itself, the error in the field
measurement, and the error in the process of the solution [7]. In order to
get closer to the real parameters, identification results and water quality
prediction results, it is necessary to minimize the influence of these bias

[8].

The Kalman filter algorithm is essentially a minimum variance estimation
in the state space. It is applied to the identification of water quality
parameters, and the main task is to find the state equations and
observation equations [9-11]. The state equation describes the variation
of the estimated value (the parameter to be considered) between the
current and the next; The observation equation describes the relation
between the estimated value and the actual observed value. Through the
"prediction correction”, the optimal values of parameters are obtained,
and the purpose of parameter identification is achieved [12].

2. DETERMINATION OF WATER POLLUTION MODEL
2.1 Determination of state equation

It is assumed that hydrogeological conditions in the study area remain
stable, The horizontal and vertical dispersion coefficients, the seepage
velocity and the nitrification / denitrification coefficients remain
unchanged [13]. The model parameter of solute transport is regarded as
the state vector, and the observed solute concentration is regarded as the
observation vector of the system. Then the corresponding state equation
is:

Xk+1 = f(xx) + Dby + wi (1a)

wherexy; = (Dy, Dy, Uy, Uy, qs, R, 1) is an unknown parameter vector
needed to be identified? the nonlinear function f(-) is state transition
function. The noise sequence wj is zero mean uncorrelated Gaussian
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random sequences [14]. The error of the model itself, the error in the field
measurement, and the error in the process of the solution are used as the
unavoidable bias in the model, the bias equation is:

- b
byy1 = by + wy (1b)

. b .
where the noise sequence wy, is zero mean uncorrelated Gaussian random
sequences.

2.2 Determination of observation equation
Consider the following solute transport equation:

ac 9*c 9*c ac
D

ac
5 xﬁ-’- yW—uxa—uy——qu+RC

dy

Where:D,, D,, are dispersion coefficients along the X and Y axis directions,
respectively; u,,u, are the seepage velocity along the X and Y axis
directions, respectively; grepresents source and sink; Rrepresents
coefficient of decay reaction; Crepresents indicating the concentration of
contaminants.

The equation of solute transport in groundwater system is nonlinear,
therefore, the Cubature Kalman filter is used to solve the problem. The
observation equation is:

7, = h(xy) + Fyby + vy (1)

where the nonlinear function h(-) is observation transition function. The
noise sequence vy, is zero mean uncorrelated Gaussian random sequences.
The noise sequence w?, w? and v, are zero mean uncorrelated Gaussian
random sequences with

Eflw? w}’ =|0 QF 0]|&; (2)
U

wg] lw}” QF 0 0

U; 0 0 Ry
Where Q¥ > 0,Q2 > 0,R, > 0and 8y is the Kronecker delta. The initial
states xp,and b, are assumed to be uncorrelated with the white noise
processes wf, w2and v,. We assume that the initial conditions x, and b,
are Gaussian random variables with

Elxo] = %o, E[(xg — %) (%o — %)T] = P§ >0
E[b] = by, E[(by — bo)gbo —b)'|=P¢>0
E[(xo — %) (by — bo)™| = PF* > 0

3. AUGMENTED STATE CUBATURE KALMAN FILTER

Define:

Xiey1 = [Z:ﬂ‘f(xk) = [f(xk)b_: Dkbk],wk = [zg]

h(X,) = h(x;) + Fyby
The model given by Egs. (1a)-(1c) may be rewritten as:

Xierr = F(Xp) + 0 (3a)
Zyx = h(Xy) + vy (3b)
Where

i 0
W:E(wkw]-):[%k QIZ:I5KI

According to the Cubature Kalman filter, treating x, and b, as the
augmented system state, the augmented state Cubature Kalman filter is
described by:

A.  Time Update

1)Assume at time k that the posterior density function p(x_yje-1) =
X(Xy—1jk-1, P—1jk—1) is known, factorize

Pk—llk—l = Sk—1|k—1SIZ—1|k—1 (4

2)Evaluate the cubature points(i=1,2, ---, m)

Xik-1lk-1 = Sk-1jk=1i T Xp—1jk-1 (5)
3)Evaluate the propagated cubature points(i=1,2, ---, m)
Xik-1ik—1 = f Kig—1jk-1 Uk—1) (6)

4)Estimate the predicted state

P 1 .

Xk|k—1 = ;Z?;1Xi,k—1|k—1(7]

5)Estimate the predicted error covariance

1 * M T e e T
Pije-1 = 2% Xip-ape-1 Xik-1je-1 — Xeqk-1Xigi-1 + Qe=1 (8)

B. Measurement Update

Factorize

Pyji—1 = Skik-1Skjk-1 9)

1)Evaluate the cubature points(i=1,2, ---, m)

Xikik—1 = Skpre-18i + Xije—1 (10)

2)Evaluate the propagated cubature points(i=1,2, ---, m)
Zi,k\k—l = h(Xi,k|k—1) (11

3)Estimate the predicted state
5 1
Zigk-1 = - Xiz1 Zige-1(12)
4)Estimate the innovation covariance matrix

1 5 5 T
Przkik-1 = ;Zﬁ1 Ziklk-1 Zi,k\k—lT — Zk-1Z1gk-1 + Ry (13)
5)Estimate the cross-covariance matrix

1 5 5 T
sz,k|k—1 = ;Zﬁl Xi,k|k—1 Zi,k\k—lr - Xk|k—1Zk\k—1 (14)
6)Estimate the Kalman gain
Ki = Puskik—1Pozg—1 ™" (15)
7)Estimate the updated state
Xie = Xipk—1 + Kie(Ze — Zyk-1)  (16)
8)Estimate the corresponding error covariance
Piie = Pije—1 — KicPozpeie—1 K 17

The detailed steps of the augmented state Cubature Kalman filter
Algorithm are summarized in Table 1.

Table 1: The augmented state Cubature Kalman filter Algorithm

Time update
1) Evaluate Sy_, 1 by factorize Py_y_1(4).
2) Calculate the cubature points X;j;_qx-; (5)and the propagated
cubature points X;_;x—1 (6)-
3) Estimate the predicted state )?k”{_l (7).
4) Estimate the predicted error covariance Py y_; (8).
Measurement update
1) Factorize Py, gets Sgjx—1(9).
2)Calculate the cubature points X;,_;(10) and the propagated
cubature points Z; ;| by measurement equation (11).
3) Estimate the predicted measurement Zy,; (12).
4) Estimate the cross-covariance matrix Py ;-1 (14).
5) Estimate the Kalman gain K, (15).
6) Estimate the updated state )?k‘k(lﬁ) and the corresponding error
covariance Py, (17).

The above filter dimension is n+p. when p is comparable to n, contrast
initial system state dimension, the new state vector X, dimension becomes
substantially larger, the computational requirement of the augmented
state Kalman filter may become excessive. It is easily overflow and fail
when running on digital computer. To solve this problem, a large number
of researchers proposed two-stage filter algorithm, Through the summary
of these literatures, in literature, we proposed two-stage Cubature Kalman
filter (TSCKF), This method was proved that under an algebraic constraint
the two-stage Kalman filter is optimal, but the algebraic constraint is
restrictive in practice, so two-stage Cubature Kalman filter is usually
suboptimal. It is proposed a two-stage Cubature filterin this paper, is
equivalent to the Augmented state Cubature Kalman Filter.

4. TWO-STAGE CUBATURE KALMAN FILTER

Theorem 1.Two-stage Cubature Kalman Filter
Xijiis the output of the advancd bias-free filter.

m
_ 1 _ _
Xijger = EZ (ka1 + T (W, Kieoapeet ) temr) — PXR—1)
Xiye = Xijre—1 + ¢(Xif\k—1) + Vk(sztlk - Xi?\k—1) - W(Xzfuc)

m
+ K (Zk - %z h(Skpi-18: + T(CD'XMk—l)'uk))
i=1
1313|k—1 = Ml%ll + Qllll - Uk(Mlgl + ngl)T
P = Pi—s + U Pl 1 U = ViePie—1 Ve — K Pog g1 (K"
= Ki Pz (KO — (K Pz g1 (KOTVIOT
Ki = Ny — Vi N¢
XZis the output of the bias filter.

m

_ 1 _

X13|k—1 = EZ fz(sk—uk—@i + T(Lple—1|k—1)luk—1)
i=1

m
_ _ _ 1 _
Xie = Xfj—r + KE (Zk “m E R(Skk-1&i + T((Dvxklk—l):uk))

i=1
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_ p]?_|k—1 = MEZEI + QI%EI _
P;ﬁk = P13|k71__ Klgpzz,kﬂcfl(KI?)T

Ki =Ng
The blending matrices U, and V, are given as follows:

U = (MIE1_+ Q}%EO(M_}?L +_Q1%E1)_1
Vi = Up = K Py i—1 (KO (PEge—)™?
Proof. The key idea for advanced Two-stage Cubature Kalman Filter is
based on state transformations that make the covariance matrices block
diagonal.
In the linear systems, two-stage Kalman Filter can be obtained by the
following Ttransformation:

T(G) = (1"6” Z)(lB)

Thus, using the two-stage transformations, Cubature Kalman Filter can
become the following form:

XAk|k71 = T(Uk))?lqk—l(lg]

XAk|k = T(Vk))?kuc (20)
Pk|k—1 = T(UE)PHk—lTT(Uk)(Zl)

Pk|k = T(Vk)_Pk|kTT(Vk) (22)
K. = T(Vi)Ki (23)

where P = diag{P*, P%}.

To extend the two-stage transformations to nonlinear system, the T
transformation of (18) is proposed as following:

T(F,X) = [X1 +Xi (XZ)] 24)

where X = {(X1)T, (X?)"}" in which X* € R*"? and X? € RP, and F (X?) is
a nonlinear function of the substate X2.

From (24), it have the following properties:

T (P Xkjk-1) _ In—P Uk] —
 end VN ERLCATED)

OXkk-1 0
oI _ [In-p Vk] _
aik|k - 0 ]p - T(Vk) (26)
Where
0P (Xfjk-1) ¥ (Xip)
U, = — Ve = —= 27
k X1 k Xk 27

Using the T transformation with (24), the two-stage transformation(19)-
(23) then become

XAk|k—1 = T(‘I’:Xk|k—1)(28)

XAk|k = T(lyl)?ldk) (29) ;

Pyjg-1 = 6T(a§;f:\_k1_1) Pijie—1 (an;j:I_kl_l)) (30)
G
K, = —aT,(;’j:‘k) I?k (32)

where ® and W are two determined nonlinear functions.

Next, based on the above (28)-(32), the two-stage Cubature Kalman filter
can be obtained via the following method.

At the first step, substituting (7),(16) into the left-hand side of (28),(29)
and using(24), We obtain

Kier + @(XZp-)] 1 -
[ I 72 ! =it F(Skotjk-1&i + T(P, Xio1ji—1), k-1 )(33)
klk—1

[X;hk + ‘P()?ék)] _ [X11|k—1 + CD(Xlglk—l) n
X X
Ky (Zk - iz;& h(5k|k—1fi + T(cb, Xk|k—1)luk))(34)
Expanding(33),(34)and using (26),(32)gets

Khecs = =X F(Secrmsé + T(¥ Kimapems) theer) — D(KEe1)(35)
X = Xier + ‘1)(le|1(—1) + Vk()?lguc - X1§|k—1) - ‘P(Xiuc) +

K; (Zk - %Z?& h(5k|k—1fi + T(¢'Xk|k—1)ruk))(36)

X}fuﬁl = 12?;1 fz(Sk—1|k—1§i + T(‘V' Xk—l|k—1)! uk*l) (37)

m

_ _ _ 1 _
X;3|k = X13|k71 + K (Zk o i} h(sk|k—1§i + T(®'Xk\k—1)luk))(38)
where
O =GO GO
K = [(Kd" &KD"
According to (8), order
1 . . 5 5 T
M,_, = ;Z?; Xi,k—l\k—l Z?ilXi,k—l\k—lT - Xk\k—lxk\k—l (39)
there is
Ml M,
M, = 40
[w,:zl)T wiz, | 40
obtain
Mty + Qs M2+ Qi
Prikey = My_1 + Qpe_q = 41
e =M Qs = a2, 4 iy miz, + g2 Y

using (25)(30) yields

Plg|k—1 = Ml%11 + ng1 - Uk(MI%EI + QI}{EI)T (42)

Pk2|k—1 = M%E1 + Q£E1(43)

U = (M2, + Q2 ) (M, + Q72,) 7" (44)
Transformation formula(31)and expanding by(30)(32)

Pl = Pliey + U P UL — Vi PR Vi — K Py -1 (K™ —
Rt Pase—s ROV = (REPoaes ROV (45)
pl?“c = pkzt\k—_l - Eﬁpzz,kuc—1(1?_;3)T(46)
Vie = Ux = K Py i1 (KD (Plie—1) 71 (47)
According to (13)-(15), order
Nie = Prgiqr—1Prigre-1(48)

we have
N¢
K, = Ny, = 49
k k [N}?]( )
using(29)

K = Ni — ViNZ(50)
K¢ = NZ(51)
are deduced.

The proof is finished. It remains to solve the problem of obtaining ® and
Y. This can be done by using (32) and the backward difference equation
as follows:

CD(X}%\LC—l) = ‘b()@?—uk—z) + Uk()_?k?.\k—l - Xi1j—2)
W) = VX jk-1) + Vil — Xi_qjk-1)

The Two-stage Cubature Kalman Filter Algorithm are summarized in
Table 2.

Table2: The Two-stage Cubature Kalman Filter Algorithm

Time update

1) Evaluate Sy_; -1 by factorize Py_y;_1(4)-

2) Calculate the cubature points X;,_;x—; (5)and the propagated
cubature pointsXy_ -1 (6)-

3) Estimate the predicted state Xy, (35) and X2,_, (37).

4) Estimate the predicted error covariance Pyj,_ (42) , Pfji—1 (43) use
M;._1(40) and Uy in (45).

Measurement update

1) Factorize Pyx—q gets Syjx—1-

2)Calculate the cubature points X;x-1(10) and the propagated
cubature points Z; ;| by measurement equation (11).

3) Estimate the predicted measurement Zk|k_1 (12).

4) Estimate the innovation covariance matrix P, x-1(13) and the
cross-covariance matrixPy, -1 (14).

5) Estimate the Kalman gain K} (50) and K?(51) with N, (48).

6) Estimate the updated state X}, (36) and X7,,(38).

7)Estimate the corresponding error covariance P,§|k[45), Pk2|k(46) and
V. in (47).

5. SIMULATION EXAMPLES

The true value and estimate value of the dispersion coefficients along the
X and Y axis directions, the seepage velocity along the X and Y axis
directions, and the source and sinkt are given in Figure 1 to Figure 10, as
well as estimation error. It can be seen from Figure 2,4,6,8,10 that the
estimated error value is within a small range which is too small to be
neglected for practical applications. In fact, this error is due to the
numerical computer error. Therefore, it is concluded that the estimation
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accuracy of Two-stage Cubature Kalman Filter and state value is the same,

N 300 . . ;
the estimation results can be accepted.
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Figure 11 and Figure 12 show the bias value and the bias error value. The
state values are derived from the augmented state computation and the
estimate values are derived from Two-stage Cubature Kalman Filter. The
same as the above estimate error figures, the bias estimate error is within
a small range and it can be obtained that the estimate value of the bias is
similar as the bias state value.

Figure 11: Bias value

estimate error value

Bias error

L L i L

L A L L L
20 40 60 80 100 120 140 160 180
Time k

Figure 12: Bias error

200

e S S g T

6. CONCLUSION

In this paper, two-stage Cubature Kalman filter is proposed in water
pollution model which to solve the nonlinear system with random bias.
Contrast previous augmented stateCubature Kalman filter, two-state
Cubature Kalman filter is equivalent to the augmented state Cubature
Kalman Filter and is optimal. The simulation results prove the validity of
the two-stateCubature Kalman filter algorithm and prove the equivalence
of the two algorithms.

ACKNOWLEDGMENTS

This work was partially supported by National Nature Science Fund of
China (NSFC)(Grant No.61403229, 61503213), Public Projects of Zhejiang
Province(Grant No0.2017C31126), Quzhou Science and Technology
Project(2016Y007).

REFERENCES

[1] Hsieh, C.S. 2003. General Two-Stage Extended Kalman Filters. IEEE
Transactions on Automatic Control, 48 (2), 289-293.

[2] Keller, ].Y., Darouach, M. 1997. Optimal two-stage Kalman filter in the
presence of random bias. Automatica, 33 (9),1745-1748.

[3] Friedland. 1969. Treatment of bias in recursive filtering. IEEE Trans.
International Journal of Control, Automation and Systems, 14 (2), 359-
367.

[4] Xu,].H.,Jing, Y.W., Dinirovski, G.M. 2008. Two-stage Unscented Kalman
Filter for Nonlinear System in the Presence of Unknown Random Bias,
American Control Conference, Washington, American, 11-13 June,
pp-3530-3535.

[5] Chen, X.Q., Sun, R, Jiang, W.C,, Jia, Q.X,, Zhang, ].X. 2016. A novel two-
stage extended Kalman filter algorithm for reaction flywheels fault
estimation. Chinese ] Aeronaut, 29 (2), 462-469.

[6] Zhang, L., Rao, W.B.,, Wang, H.l, Xu, D.X. 2016. A Novel Two-stage
Cubature Kalman Filter for Nonlinear System. Journal of Residuals Science
and Technology, 13 (7), 2061-2068.

[7] Alouani, A.T., Xia, P., Rice, T.R., Blair, W.D. 1993. On the Optimality of
Two-Stage State Estimation in the Presence of Random Bias. IEEE
Transactions on Automatic Control, 38 (8), 1279-1282.

[8] Hsieh, C.S., Chen, F.C. 1999. Optimal solution of the two-stage Kalman
estimator. IEEE Transactions on Automatic Control, 44 (1), 194-199.

[9] Hsieh, C.S., Chen, F.C. 2000. General Two-Stage Kalman Filters. IEEE
Transactions Automatic Control, 48 (4), 819-824.

[10] Wen, C.B.,, Wang, Z.D,, Liu, Q.Y., Fuad, E., Alsaadi. 2016. Recursive
Distributed Filtering for a Class of State-Saturated Systems with Fading
Measurements and Quantization Effects. IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans
DOI:10.1109/TSMC.2016.2629464

[11] Ge, Q.B., Xu, D.X., Wen, C.L. 2014. Cubature information filters with
correlated noises and their applications in decentralized fusion. Signal
Process, 94 (1), 434-444.

[12] Ge, Q.B.,, Wen, C.L.,, Chen, S.D. 2013. Cubature Kalman fusion for
bearings only tracking networks. 3rd IFAC International Conference on
Intelligent Control and Automation Science, Chengdu, China, 2-4
September.

[13] Zhang, L., Lv, M.L,, Niu, Z.Y., Rao, W.B. 2014. Two-Stage Cubature
Kalman Filter for Nonlinear System with Random Bias. 2014 IEEE
International Conference on Multisensory Fusion and Information (MFI
2014), Beijing, China, 47-55.

[14] Arasaratnam, I, Haykin, S. 2009. Cubature Kalman Filters. IEEE
Transactions on Automatic Control, 54 (6),1254-1269.

Cite the Article: Zhang Lu, Xu Daxing, Wang Hailun (2018). Two-Stage Cubature Kalman Filter and its Application in Water Pollution Model.
Acta Scientifica Malaysia, 2 (1) : 09-13.



	Untitled



